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ABSTRACT 
 
 Polarization-mode dispersion (PMD) is a major impairment for high bit rate 

systems resulting in pulse broadening and distortion and thus leading to system 

performance degradation. Given the stochastic nature of PMD, it is extremely 

important to characterize PMD and perform system outage analysis to gain a better 

understanding of its impact on network reliability. The objective of this research work 

is to develop a numerical model that would accurately model the temporal and 

spectral PMD characteristics on buried long-haul optical fiber links and use the model 

to predict first-order PMD outage rates and also study how the outage rates vary with 

link length. 

 To achieve the above objective, a three-fold approach was followed. First, the 

first-order outage rate expression given by Caponi et al. [1] was simplified to a 

closed-form expression that depends only on two parameters. Second, the existing 

numerical model for PMD was enhanced by adding the temporal component to it and 

the model was validated by replicating the PMD characteristics observed through 

measurements on several buried fiber links. Third, the enhanced model was used to 

simulate the PMD characteristics on long-haul optical fiber links of different lengths 

and using the simulated data and the simplified first-order outage rate expression 

outage rates were predicted on long-haul links and the variation of outage rates with 

link length was studied. 

 From the analysis of measured differential-group delay (DGD), it was 

determined empirically that DGD time derivative (∆τ') has a Laplacian PDF and this 

led to the simplified first-order outage rate expression which showed that the outage 

rates are inversely proportional to the Laplacian parameter (α). The enhanced 

numerical model was able to replicate all of the major PMD characteristics observed 

from measurements. A simulation study of the long-haul links showed that the 

Laplacian parameter is inversely related to the link length and that the outage rates 

increase monotonically with the link length provided the receiver DGD threshold is 

 v



greater than the link mean DGD. This important finding will have a great impact on 

the network design of all the major carriers that are pushing for high-speed, all-

optical, ultra long-haul optical fiber links. The above finding implies that realizing 

such links requires sophisticated PMD mitigation strategies to ensure network 

reliability.  
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1. INTRODUCTION 
In spite of the recent telecom bubble, statistics show that the net traffic growth 

(combined Internet, data and voice traffic) remains at the same level as it was four 

years ago and network capacity is being exhausted at the same rate as it was during 

the pre-bubble time [2]. Applications such as videoconference, telephony, movies on 

demand, distance learning, telemedicine and technologies like fiber-to-the-home 

(FTTH) and fiber-to-the-premise (FTTP) are expected to fuel the future bandwidth 

demand and soon the existing infrastructure will run out of capacity and new capacity 

will have to be added to accommodate the ever-growing need for bandwidth [2]. One 

way to add capacity is to increase the transmission speeds. However, certain technical 

challenges need to be addressed to enable long-haul high-speed transmission. Two 

such challenges are polarization-mode dispersion (PMD) and chromatic dispersion 

variability, and of these two, PMD is the more difficult one because of its stochastic 

nature. While there are PMD challenges facing carriers at 10 Gb/s, these challenges 

are not as severe as originally feared. A marked improvement in the PMD tolerance 

of 10 Gb/s long-reach receivers will likely satisfy most length demands, obviating the 

need for PMD mitigation in many systems. However, transmission speeds of 40 Gb/s 

and beyond will most likely require some form of PMD mitigation in long-haul 

applications [3]. 

PMD is caused by optical birefringence and is a fundamental property of 

single-mode optical fiber and fiber-optic components in which signal energy at a 

wavelength is resolved into two orthogonal polarization modes of slightly different 

propagation velocities. PMD results in pulse broadening and distortion thereby 

leading to system performance degradation [4]. Unlike the chromatic dispersion, 

PMD varies stochastically in time making it particularly difficult to assess, counter or 

cope with [5]. Active research is being conducted by different groups on different 

issues of PMD for more than a decade. The key issues of PMD research can be 

broadly classified into three categories [2]: (i) fundamental understanding of the 

phenomenon and its impact, (ii) measurement, and (iii) mitigation strategies. The 
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objective of the PMD research is to understand the stochastic nature of PMD 

thoroughly through analytical analysis, simulations and/or analysis of measured data 

and determine an efficient means for mitigating PMD effects on long-haul fiber 

networks.  

To ensure signal quality on their fiber at higher rates, network engineers must 

anticipate the impact of PMD on various fiber routes. Design of a reliable network 

requires a good model of the PMD characteristics on each link. An understanding of 

the temporal and spectral variability of both the differential group delay (DGD) and 

principal states of polarization (PSPs) is required to specify appropriate transmission 

parameters and also the required speed of PMD compensators. Factors such as the 

mean DGD, PMD correlation time and bandwidth, as well as second-order effects 

together with performance prediction models can provide this understanding [3],[6]. 

Also, a solid understanding of PMD-induced system outages will help engineers and 

researchers to develop new and cost-efficient mitigation alternatives to PMD 

compensators. 

The first part of chapter 2 of this report reviews the PMD work published by 

others in the PMD research community on the specific issues of temporal and spectral 

behavior of PMD, system outage analysis and numerical modeling of PMD. The 

second part of chapter 2 describes the work that I have done as part of my Master’s 

degree that is directly related to the current work. The third part of chapter 2 explains 

the objective and the significance of the current work. The simplified first-order PMD 

outage rate expression is discussed in chapter 3. Chapter 4 details the enhancements 

made to the simple numerical model to accurately model the temporal and spectral 

PMD characteristics of buried single-mode fibers. The results from simulations using 

the enhanced numerical model and a comparison with the measurements are shown in 

chapter 5. A simulation study of variation of first-order PMD outage rates with link 

length is presented in chapter 6. Chapter 6 is followed by conclusions and various 

ideas for future work.  
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2. LITERATURE REVIEW AND PREVIOUS WORK 
2.1. Literature review 
 This section of the chapter reviews the published research work by others in 

specific areas of PMD which are related to the work presented in this report. The 

specific PMD areas that are reviewed are temporal behavior, spectral behavior, 

system outage analysis and numerical modeling. 

 
2.1.1. Temporal behavior of PMD 

2.1.1.1. Reported rates of change of PMD 

 The PMD characteristics of buried/aerial fibers are much different from the 

spooled fiber in the laboratory and hence it is important to characterize buried/aerial 

fibers rather than spooled fibers.  A number of research groups have made long-term 

PMD measurements on buried/aerial fibers and reported different time rates of 

change of PMD ranging from a few minutes to few days. The general consensus is 

that temperature changes in buried fibers are slow in general and cause slow PMD 

variations whereas in aerial fibers temperature changes and hence the PMD variations 

are much faster. This section surveys the time rates of change of PMD reported by 

different groups.  

 Karlsson et al. [7] conducted a detailed long term study with simultaneous 

measurements on two 127-km dispersion-shifted fibers in the same embedded cable. 

PMD was measured roughly once every 2 hours alternately on the two fibers from 

1505 to 1565 nm in steps of 0.1 nm using Jones matrix method for about 36 days. 

Mean DGD (averaged over wavelength and time) values of 2.75 and 2.89 ps and 

correlation times of 3 and 5.7 days were reported on the two fibers. A strong 

correlation between the changes in DGD and PSPs was reported and the study also 

indicated that the rate of temporal change of the PMD increased with the cable length 

and mean DGD. Contour plots of measured DGD versus wavelength and time on one 

of the fibers studied by Karlsson et al. [7] is shown in figure 2.1.  
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Figure 2.1. DGD vs. wavelength and time on one of the  

fibers studied by Karlsson et al. [7]. 
 

In another study, Nagel et al. [8] measured DGD and PSPs on a 41-ps mean 

DGD embedded single-mode fiber (114-km long) once every 5-10 minutes over a 70-

day period using a custom algorithm. Average correlation times of 19 hours for DGD 

and 5 hours for PSPs were reported indicating that the PSPs change more rapidly than 

DGD. Cameron et al. [9] measured wavelength-averaged DGD using interferometric 

method on a 48.8-km buried standard single-mode fiber once every 58 seconds for 

about 15 hours. It was reported that the time scale of mean DGD change over the 15-

hour measurement period varied between 1 and 2 hours. It was also reported that 

small values of PMD had large fluctuations in PMD measurements and that the 

magnitude of the fluctuations decreased as the PMD increased. De Angelis et al. [10] 

reported a correlation time of at least 20 minutes from the data measured over 17-km 

of buried fiber (fiber type not specified) for about 27 hours. In addition it was 
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reported that the correlation between the temperature fluctuations and evolution of 

DGD and PSP is much stronger in links which includes connectors that are exposed 

to temperature variations.  Bulow et al. [11] reported the fastest PMD fluctuations in a 

time scale of 6 to 13 ms on a 52-km, 7.3-ps mean DGD buried cable. Such fast 

changes were attributed to moving of the fiber pigtails in the central office. 

 For submarine cables, Takahashi et al. [12] reported a DGD correlation time 

of about 1 hour on 119-km fiber (fiber type not specified) and Kawazawa et al. [13] 

observed PMD changes with a period of about two months on a 62-km dispersion 

shifted fiber. Takahashi et al. also reported that the time scale of DGD and PSP 

evolution also depends on the product of fiber length and time which implies shorter 

correlation time for longer fibers.  

Cameron et al. [9] reported that DGD variations on a 96-km aerial cable 

(SMF) exhibited time scales ranging from 5 to 90 minutes depending on the air 

temperature rate of change. 

 Some groups have also reported DGD correlation times for spools of fiber in a 

laboratory environment. These are included here for completeness of the survey. 

Bahsoun et al. [14] reported a correlation time of about 3 hours on a 10-km spool of 

dispersion shifted fiber. A correlation time of about 30 minutes was reported by Poole 

et al. [15] on 31.6-km spool of dispersion shifted fiber. 

2.1.1.2. Temporal autocorrelation functions 

 From a mathematical point of view, the temporal behavior of PMD can be 

understood by studying the autocorrelation functions. Karlsson et al. [7] derived the 

analytical expressions for autocorrelation functions of SOP s(ω, t) and PMD vector  

Ω(ω, t). The temporal autocorrelation function for two polarization states at the same 

frequency was shown to be 

 ( ) ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆−
=⋅

d
21 t

t
exptstsE  (2.1) 

and the temporal autocorrelation function for the PMD vector at the same frequency 

was shown to be 
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 where ∆t = t1-t2, ∆τ is the instantaneous DGD, E[.] is expectation and td is the 

average drift time for both absolute polarization states and PMD vector of an installed 

fiber. 

 The parameter td indicates the time scale over which the absolute polarization 

states and the PMD vector changes and it depends on installation-specific data such 

as the amount of environmental perturbations and disturbances. It cannot be predicted 

or estimated from known fiber parameters, it must be measured for each fiber. 

However, it has been shown that td depends on ‘b’, the PMD coefficient (ps/√km), as 

[7] 
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where ω is the carrier frequency, L is the total length of the fiber, and t0 is a measure 

of the drift time of the index difference in the birefringent element used to model the 

fiber. (2.3) implies that the drift is more rapid for long fibers and high PMD [7]. 

2.1.2. Spectral behavior of PMD 

2.1.2.1. Frequency autocorrelation functions 

  Karlsson et al. [16], Shtaif et al. [17], and Mecozzi et al. [18] derived the 

frequency autocorrelation function of the PMD vector Ω which is given by 
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where ∆ω = ω1-ω2, ∆τ is the instantaneous DGD and E[.] is the expectation. 

Karlsson et al. [16] also noted that the main contribution to the autocorrelation 

function of (2.4) comes from the de-alignment of the principal states rather than from 
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a change of the DGD. Shtaif et al. [17] reported that the frequency autocorrelation of 

DGD takes the form  
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where ∆ω = ω1-ω2, ∆τ is the instantaneous DGD and E[.] is the expectation.         (2.5) 

2.1.2.2. Correlation bandwidths 

 Karlsson et al. [16] showed the correlation bandwidth of the PMD vector to be 

4√2/E[∆τ] which is close to the one reported by Shtaif et al. [17]. Shtaif et al. [17] 

also showed that the correlation bandwidths of the length of the PMD vector (DGD) 

and the angle of the PMD vector are comparable to each other and are given by 

4/E[∆τ] and 5.2/E[∆τ]. This means that the rate at which the length of the PMD 

vector changes with optical frequency is comparable with the rate at which its 

orientation changes in Stokes space. From the expressions for the correlation 

bandwidths it is clear that fiber with a high mean DGD have narrower correlation 

bandwidth than fibers with a low mean DGD.  

 

2.1.3. System outage analysis 

2.1.3.1. Definitions of a PMD outage 

 Different definitions for a PMD outage can be found in literature. The most 

common definition is to define a PMD outage as an event where the penalty due to 

PMD exceeds a given value. The penalty could be power penalty [19], [20], eye-

opening penalty [20], [21], OSNR penalty [20] or Q penalty [22]. Another definition 

for PMD outage (used by Bulow [23], and Damask et al. [24]), is an event where the 

BER value exceeds a given value (typically 10-12). A different definition is given by 

Caponi et al. [1] where the outage is defined as an event where the DGD exceeds a 

given threshold value. The advantage of Caponi et al.’s definition is that the outage 

probabilities can be calculated directly from the Maxwellian distribution of DGD by 

integrating the distribution over the limits. 
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2.1.3.2. Outage probabilities, rates and durations 

Using the definition of PMD outage given by Caponi et al. [1], the outage 

probability Pout due to first-order PMD can be calculated from the Maxwellian PDF, 

f∆τ(⋅) as 

                                 (2.6)                         ( ) ( )∫
τ∆

τ∆ τ∆τ∆−=τ∆≥τ∆=
th

0
thout df1PP

where ∆τth is the DGD threshold value. Pout is often expressed in minutes/year. Pout is 

fiber independent and will be the same for all installations. If the probability of an 

outage is quite small, Pout represents the annualized outage probability based on long 

time records.  Accurate estimation of the impact of PMD on network availability 

requires statistical analysis of DGD variability. Caponi et al. [1] showed how the 

mean time between PMD-related outages could be estimated from the temporal 

characteristics of DGD variations and the Maxwellian PDF. The calculation of mean 

outage rate, Rout, which is defined as the mean number of outage events per unit time 

(with units of 1/year), is a simple application of the ‘Level Crossing’ problem and has 

been derived by Caponi et al. [1] as 

                                     ( ) ( ) 'd''ff
2
1R 'thout τ∆τ∆τ∆τ∆= ∫

∞

∞−
τ∆τ∆  (2.7)                               

where ∆τ' is the time derivative of the DGD, and f∆τ'(⋅) is the PDF of ∆τ'. Caponi et al. 

observed ∆τ and ∆τ' to be statistically independent and also found that Rout is cable 

and installation dependent. Caponi et al. numerically evaluated the PDF of ∆τ', f∆τ'(⋅), 

from measured DGD data. The mean time between the outages (MTBO) is the 

inverse of Rout. The mean duration of DGD-induced outages can be determined using 

statistical analysis as well.  Caponi et al. [1] showed that the mean outage duration, 

Tout, is  

                                                         outoutout RPT =  (2.8)                         

which has units of minutes. Since Tout is found using Rout, which is cable and 

installation dependent, Tout will also be cable and installation dependent. 
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 Using the above analysis, Caponi et al. [1] predicted that for the 37-km buried 

link they studied, the DGD will exceed three times the mean DGD once every 2.5 

years with a mean outage duration of 56 minutes. A similar study was conducted by 

Nagel et al. [8] on a 114-km buried link and it was reported that on that link the DGD 

will exceed three times its mean value once every 3.5 years with a mean outage 

duration of between 10 and 20 minutes. 

2.1.3.3. Other methods 

 Many of the research groups working on the PMD outage analysis [20], [21], 

[22], [23], [24], [25] used either the penalty definition or the BER definition of PMD 

outage mentioned in section 2.3.1 and derived analytical expressions for PMD outage 

probabilities based on the assumptions made (such as considering just first-order 

PMD, first- and second- order PMD, DGD and PSP variation etc.). Results from 

simulations and emulations were also reported to show the validity of the analytical 

expressions derived. Over the last 2 to 3 years a couple of research groups studied and 

reported [26], [27], [28] and [29] ways to apply the concept of importance sampling 

and its variations for computing outage probabilities due to first- and second-order 

PMD. The importance sampling method for PMD is still evolving and it could be a 

while before PMD emulators using importance-sampled algorithms are developed. 

 

2.1.4. PMD in fiber-optic components 

 An optical fiber communication link has many components apart from the 

fiber such as the modulators, WDM multiplexer/demultiplexer, optical amplifiers, 

optical add/drop multiplexers, chromatic-dispersion compensating devices, etc. that 

exhibit PMD. However, PMD in these components, except for the dispersion 

compensating fiber (DCF), is deterministic in nature and is time-invariant. Also, with 

the increased awareness of the effects of PMD on system performance, component 

manufacturers are using advanced and sophisticated manufacturing processes that 

would minimize the PMD in their components. 
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2.1.4.1. PMD in erbium-doped fiber amplifiers (EDFAs) 

 Geiser et al. [30], [31] studied the behavior of PMD in EDFAs and other fiber 

amplifiers. They used Jones Matrix Eigenanalysis (JME) method with some special 

input conditions to measure PMD in EDFAs over long time periods and at different 

temperatures. Through their analysis Geiser et al. reported that the PMD of the 

EDFAs is deterministic in nature and it is not affected by random coupling changing 

with time or with external conditions like temperature [30]. They also observed DGD 

values to be < 0.12 ps for newer EDFAs and up to 0.7 ps for older EDFAs [31]. 

2.1.4.2. PMD in dispersion compensating fibers (DCFs) 

 Studies [32] [33] have shown that PMD in dispersion compensating fiber is 

quite significant and it shows strong temperature dependence. Hence when modeling 

PMD on optical fiber link that has DCF, the PMD characteristics of the DCF should 

be taken into account along with the PMD characteristics of the single-mode fiber. 

However, effects of PMD are significant only at higher data rates of 40 Gbps or 

above and at those rates DCFs are generally not used to compensate or manage the 

chromatic dispersion, instead sophisticated fixed or tunable chromatic dispersion 

management devices are used and these devices exhibit very low deterministic PMD.  

 

2.1.5. Numerical modeling of PMD 

 Prediction of PMD-induced outages on realistic link lengths (> 500 km) 

would require long-term access to such a link and is not economically feasible at this 

time.  Another approach to obtain PMD-induced outage statistics is to develop 

numerical models that realistically reflect the PMD-characteristics of buried fiber. 

While PMD numerical models exist, they do not include the necessary temporal 

variations needed for PMD-induced outage analysis.  

 Dal Forno et al. [34] described a model for numerical simulation using coarse-

step method. It considers a SMF as a concatenation of unequal length segments with a 

given mean birefringence and random coupling angles. The Jones matrix T (ω) that 
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describes a concatenation of unequal sections of birefringent fiber can be expressed as 

[34] 
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where N is number of segments, Bn(ω) represents the birefringence matrix of nth 

segment with hn length (in km), R(αn) is the matrix of a rotator that represent the 

random coupling angle between the segment axes, b is the PMD coefficient of the 

fiber in ps /√km and ω is the optical frequency in radians. 

 For a given value of total PMD and fiber length L, the length of the each 

segment is randomly generated from a Gaussian distribution around the mean length 

L/N with standard deviation around 20% of the mean length. The phase φn in (2.10) 

accounts for the small temperature fluctuations along the fiber and it is a stochastic 

variable with a uniform distribution between 0 and 2π. αn is the random coupling 

angle between the segment axes and is a random variable with uniform distribution 

between 0 and 2π.  

 The DGD, ∆τ, for a single wavelength can be found by calculating the 

eigenvalues of the matrix Tω(ω)*T-1(ω), where Tω(ω) is the frequency derivative of 

the transmission matrix. Tω can be approximated as [T(ω+∆ω)-T(ω)]/∆ω for a small 

frequency step, ∆ω. The DGD is determined using the expression [1] 
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where ρ1 and ρ2 are the eigenvalues described above. 
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The above model, if used as described by Dal Forno et al. [34], would give 

insight into the Maxwellian nature of DGD and the non-periodic DGD spectral 

dependence.  However, to match the temporal and spectral characteristics measured 

on a particular fiber, the free variables in the model (namely b, φn, and αn) should be 

varied in accordance with the temperature and other environmental variations over 

the measurement period.   

 

2.2. Previous work [Master’s level research] 
 This section of the chapter summarizes my previous PMD research work, 

which is closely related to the current work. The work mainly involved making long-

term measurements of DGD versus wavelength and time on three buried standard 

single-mode fiber spans each of ~ 95 km and analyzing the data. In this section, first 

the measurement setup used is described followed by the results from the data 

analysis. 

2.2.1. Automated PMD measurement setup 

The measurement setup used to make automated DGD measurements across a 

given wavelength band and over time using the Agilent lightwave polarization 

analyzer (PA) is shown in figure 2.2. Jones Matrix Eigenanalysis (JME) method is 

used for making DGD measurements. The measurement setup is controlled by the 

visual basic (VB) software running on the system controller PC. This setup can be 

used to measure DGD as well as polarization-dependent loss (PDL). For measuring 

DGD it makes use of the JME application in the polarization analyzer.  

One measurement at a specific wavelength and at a specific time takes about 4 

seconds. The measurement time for an across-the-band measurement is a function of 

the range of wavelength band and the wavelength step size used. Typically, one 

measurement across the 35-nm EDFA band with a step size of 0.1-nm takes about 23 

minutes while one measurement across 1510 nm – 1625 nm band with a 0.1 nm step 

size takes about 90 minutes. The maximum measurable DGD using the JME method 
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varies with the wavelength step and the band of operation. As per the PA user manual 

[35], in the 1550-nm band the maximum measurable DGD is about 40 ps with a 0.1-

nm step size and it is 4 ps with a 1-nm step size. The uncertainty in measuring DGD 

using JME method is also a function of step size. The uncertainty is about ± 310 fs for 

a 0.1-nm step size and ± 90 fs for a 1-nm step size [35].  
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Figure 2.2. Automated PMD measurement setup. 

The measured data are automatically stored into text files. The size of these 

files depends on the number of measurement points and they are about 8 KB to 30 

KB.  

 The measurement system shown in figure 2.2 is usually very reliable and the 

measurements are stable. However, occasionally (once in a month or so) any of the 

instruments might become frozen and the measurements are stopped. The best thing 

to do to avoid loss of data due to such errors is to check the measurements often 
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(several times a day) and then restart the measurement system when such errors 

occur. To avoid losing data due to unintended power failures, uninterruptible power 

supplies (UPS) were used.  

2.2.2. Long-term measurements of buried single-span links 

2.2.2.1. Measurement setup 

 

~ 95 km

 
 
 
      Automated PMD      
      measurement setup  
      shown in figure 2.2 

Single-span link 1 / Single-span link 2 / 
Single-span link 3 

 

 
 
 
 
 
 
 
 

Figure 2.3. Measurement setup for characterizing buried single-span links. 

2.2.2.2. Plots of DGD vs. wavelength and time 

Given the dynamic nature of PMD and the low probability of excursions to 

intolerable levels, measurements of ∆τ(λ, t) on the three buried single-span links were 

made over long periods to enable prediction of the potential impact of PMD on 

network availability.  Of particular interest are the frequency and duration of these 

rare events. On link 1, the DGD was measured roughly every 3 hours for 86 days 

(692 measurements from November 9, 2001 through February 2, 2002) at 

wavelengths from 1510 nm to 1625 nm with a spectral resolution of 0.1 nm (about 

12.5 GHz). The DGD on link 2 was measured about every 1½ hrs for 14 days (236 

measurements from May 4, 2002 through May 18, 2002) over the same spectral band 

and with the same resolution as link 1. The DGD measurements on link 3 were 

repeated roughly every 1½ hrs and they were carried out for about 64 days (1072 

measurements from May 29, 2002 through Aug. 1, 2002) over the same spectral band 

with the same resolution.  The plots in figure 2.4 show the normalized DGD 

measured on these three single-span links in a color-coded format. 
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It is clear from figure 2.4 that for buried fibers, DGD changes with time. This 

variation is random and differs from fiber to fiber, but is very slow. This is evident by 

comparing figure 2.4 (b) with figures 2.4 (a) and (c). Figure 2.4 (b) corresponds to 14 

days of DGD data on link 2 and no appreciable change in DGD can be observed over 

time in that figure, whereas in figures 2.4 (a) and (c), which show DGD data over  

longer periods on links 1 and 3, a significant change in DGD over time can be 

observed. Also, it is evident that DGD varies significantly with wavelength and 

relatively high-DGD events are spectrally localized. 

 

Figure 2.4. (a) Measured, normalized DGD vs. wavelength  
and time on link 1 for 86 days. 
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Figure 2.4. (b) Measured, normalized DGD vs. wavelength 

and time on link 2 for 14 days. 

 
Figure 2.4. (c) Measured, normalized DGD vs. wavelength 

and time on link 3 for 64 days. 
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2.2.2.3. Histograms of measured DGD data 

        Histograms of the normalized DGD data on all the three single-span links in 

linear and log scales are shown in figures 2.5 and 2.6. It can be observed that these 

histograms have shapes consistent with a Maxwellian distribution, as expected. 

Curves representing a Maxwellian distribution for 1-ps mean DGD are also plotted 

for comparison. These curves fit very well to the measured data, particularly for links 

1 and 3, as there is large amount of data from these links. Results from the modified 

chi-square goodness-of-fit test (details of which are described in Appendix A) 

performed on these histograms are given in table 2.1. 

Table 2.1. Results from the modified chi-square test for measured  
DGD histograms on single-span links. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1 96 78.73 7.56 Accept  
Link 2 93 76.01 482.76 Reject 
Link 3 97 79.63 4.90 Accept 

 

2.2.2.4. Mean DGD variation with time 

To observe the time-dependent nature of DGD more closely, 1150 

measurements of DGD over all wavelengths were averaged together to obtain 

frequency-averaged DGD data, denoted as <DGD>λ normalized by the overall mean 

DGD, denoted as <<DGD>λ>t.  Since temperature is a known driver of DGD 

variation [7], hourly air temperature data for the region were obtained from National 

Climatic Data Center website [36].  The variation of normalized frequency-averaged 

DGD and temperature with time on the three single-span links is shown in figure 2.7. 

From those plots it can be observed that the variation in frequency-averaged DGD is 

less than 10 % over the measurement period.  It is apparent (see top plot figure 2.7) 

that longer-term temperature variations do correlate with variations in the frequency-

averaged mean DGD. 
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Figure 2.5. Histogram of measured, 

normalized DGD data in linear scale on 
link 1 (top), link 2 (middle) and link 3 

(bottom). 

 
Figure 2.6. Histogram of measured, 

normalized DGD data in log scale on 
link 1 (top), link 2 (middle) and link 3 

(bottom). 
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Figure 2.8. Calculated outage 

probability, Pout, and relative mean 
outage rate Rout, versus threshold/mean 

DGD for the three single-span links. 
 

 

 
 

Figure 2.9. Calculated relative mean 
outage duration, Tout, as a function of 

threshold/mean DGD for the three single 
span links. 

Figure 2.7. Frequency-averaged 
DGD and air temperature vs. time for 
link 1 (top), link 2 (middle) and link 3 

(bottom). 
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2.2.2.5. System outage analysis 

        A detailed discussion of theoretical concepts of system outage analysis was 

presented in section 2.1.3. Following that discussion, the outage probability Pout, is 

determined using the Maxwellian distribution, the mean outage rate Rout and the mean 

outage duration Tout are determined from the measured DGD data on the three fibers.   

        Figure 2.8 shows the calculated outage probability, Pout, and the relative mean 

outage rate, Rout, (actual mean outage rate multiplied by the mean DGD (in ps) of the 

link) for a given system threshold relative to the mean DGD on the three links. Figure 

2.9 shows the calculated relative mean outage duration, Tout, (actual mean outage 

duration divided by the mean DGD (in ps) of the link) as a function of system 

threshold relative to the mean DGD on the three links. 

From the above analysis, we can estimate the relative mean time between 

outages (MTBO) and relative mean outage durations for various DGD tolerances for 

these links.  Table 2.2 lists these values for system thresholds of 3 and 3.7 times the 

mean DGD. To determine the actual values, the relative values in table 2.2 should be 

multiplied by the mean DGD (in ps) of the link. For example, if the mean DGD were 

2 ps (not the actual value), MTBO for a threshold of 3 times mean DGD would be 

12.78 years and the mean outage duration would be 272 minutes. 

 
Table 2.2. Predicted relative mean time between outages (MTBO) and  

relative mean outage durations for different DGD tolerances. 
 3*<DGD> 3.7*<DGD> 

Link 1 
MTBO 

Outage duration 

 
6.39 years 
136 min 

 
1648 years 

108 min 
Link 2 
MTBO 

Outage duration 

 
3.25 years 

69 min 

 
833 years 

55 min 
Link 3 
MTBO 

Outage duration 

 
3.96 years 

84 min 

 
1021 years 

67 min 
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2.2.3. Long-term measurements of two-span links 

To study the behavior of PMD on links of greater length, experiments were 

conducted to measure the instantaneous DGD on two fiber spans concatenated with 

an EDFA in between, with an effective length of about 190 km. Three different 

combinations of the three single-span fibers were used in the experiments. Single-

span links 1 and 2 were concatenated to form the two-span link 1-2, single-span links 

2 and 3 were concatenated to form the two-span link 2-3 and likewise links 1 and 3 

were concatenated to form the two-span link 1-3. The measurement setup for these 

experiments is shown in figure 2.10. 

Measurements of two-span links were made at wavelengths from 1535 nm to 

1565 nm and were repeated once every 23 minutes. Since EDFAs were used in the 

loop, the λ-band had been reduced to the EDFA band. Measurements were carried on 

for 18 days on link 1-2 (Aug. 22, 2002-Sept. 9, 2002), for 21 days on link 2-3 (Aug. 

1, 2002-Aug. 22, 2002) and for 16 days on link1-3 (Sept. 27, 2002-Oct. 13, 2002). 

2.2.3.1 Measurement setup 

 

 

 

 

 

 

 

 

~ 95 km
Link 1 / 
Link 2 / 
Link 3  

~ 95 km

EDFA EDFA 

Link 2 /  
Link 3 /  
Link 1  

 
 
 
      Automated PMD      
      measurement setup  
      shown in figure 2.2 

Figure 2.10. Measurement setup for characterizing the concatenated fiber spans. 

2.2.3.2. Plots of DGD vs. wavelength and time 

      The plots in figure 2.11 show the normalized DGD measured on the three two-

span links respectively in color-coded format. 
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Figure 2.11. (a) Measured, normalized DGD vs. wavelength  

and time on two-span link 1-2 for 18 days. 
 

 
Figure 2.11. (b) Measured, normalized DGD vs. wavelength  

and time on two-span link 2-3 for 21 days. 
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Figure 2.11. (c) Measured, normalized DGD vs. wavelength  

and time on two-span link 1-3 for 16 days. 
 

It can be observed from the color maps in figure 2.11 that the DGD on the 

two-span links changes with time and wavelength. However, unlike the single-span 

links, the variation of DGD with time on two-span links is more rapid. This might be 

due to the fact that on two-span links, light is transmitted through the first buried fiber 

span, amplified at the end of first span in the laboratory and then retransmitted 

through the second buried span. The temperature of the laboratory was not 

maintained at a constant value and so it varied during the day. To observe any 

periodic variations in the DGD a discrete Fourier transform (DFT) of the DGD data is 

obtained and examined. Figure 2.12 shows normalized DGD variations with time at 

1560 nm wavelength on link 1-2. Figure 2.13 shows the DFT of the DGD data (with 

mean value subtracted). It can be observed from figure 2.13 that there are many 

periodic components, however, the 1-day component is the most dominant followed 

by the ½ day component. Even though the mean value is subtracted from the data, the 
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DC component in figure 2.13 is still relatively strong. This might be because of the 

variation of mean DGD over time. Similar observations were made at other 

wavelengths as well which showed similar results. 

 

 
Figure 2.12. DGD/Mean DGD vs. Time at 1560 nm on link 1-2. 

 
Figure 2.13. DFT of DGD at 1560 nm with mean value subtracted from DGD data. 
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2.2.3.3. Histograms of measured DGD data 

       To verify the Maxwellian nature of the measured DGD, histograms of the 

normalized DGD data measured on the three two-span links are obtained in linear and 

log scales and are shown in figures 2.14 and 2.15. Curves representing a Maxwellian 

distribution for 1-ps mean DGD are also plotted for comparison. It can be observed 

from the figures that the histograms show a good agreement with the theoretical 

Maxwellian curve-fits. Results from the modified chi-square goodness-of-fit test 

(details of which are described in Appendix A) performed on these histograms are 

given in table 2.3. 

 
Table 2.3. Results from the modified chi-square test for measured  

DGD histograms on two-span links. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1-2 100 82.36 211.88 Reject 
Link 2-3 100 82.36 65.7 Accept 
Link 1-3 90 73.29 53.04 Accept 

 

 

2.2.3.4. Mean DGD variation with time 

       The variation of frequency-averaged DGD data, denoted as <DGD>λ normalized 

by the overall mean DGD, denoted as <<DGD>λ>t and temperature with time on the 

three concatenated fiber spans is shown in figure 2.16.  The temperature shown in 

these plots is the hourly air temperature data for the region and not the laboratory 

temperature. It can be observed from the plots in figure 2.16 that the variation in 

frequency-averaged DGD on the link 1-2 and link 1-3 is less than 10 % over the 

measurement period and is less than 20 % on link 2-3.   
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Figure 2.14. Histogram of measured, 

normalized DGD data on two-span links 
in linear scale; link 1-2 (top), link 2-3 

(middle), and link 1-3 (bottom). 

Figure 2.15. Histogram of measured, 
normalized DGD data on two-span links in 
log scale; link 1-2 (top), link 2-3 (middle), 

and link 1-3 (bottom). 
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Figure 2.16. Frequency-averaged DGD 
and air temperature vs. time for two-

span links; link 1-2 (top), link 2-3 
(middle) and link 1-3 (bottom). 

 
Figure 2.17. Calculated outage probability, 

Pout, and relative mean outage rate Rout, 
versus threshold/mean DGD for the two-

span links. 
 

 
Figure 2.18. Calculated relative mean 
outage duration, Tout, as a function of 
threshold/mean DGD for the two-span 

links. 

 27



2.2.3.5. System outage analysis 

        The outage probability, Pout, for different threshold values is calculated from 

the Maxwellian distribution using (2.6). The mean outage rate, Rout, and the mean 

outage duration, Tout, for different threshold values are calculated from the DGD data 

measured on the two-span links using (2.7) and (2.8) respectively. The calculated Pout, 

relative Rout and relative Tout values as a function of normalized threshold are shown 

in figures 2.17 and 2.18. Table 2.4 lists the values of relative mean time between 

outages (MTBO) and relative mean outage durations for system thresholds of 3 and 

3.7 times the mean DGD. 

A comparison of values from table 2.4 with those of table 2.2 by taking into 

account the actual mean DGD values (not mentioned in this report) showed that the 

outage rates are higher for two-span links than for single-span links and the 

corresponding outage durations are lower for the two-span links. In section 2.2.3.2, 

from the color maps of the DGD we observed that the DGD varied at a much faster 

rate with time on two-span links compared to the single-span links. As a result the 

chances of an outage occurrence also increase. On single-span links, for example link 

1, DGD drifted at a very slow rate and so it takes years to observe a high-DGD outage 

event (like 3.7 times the mean). On the other hand, since DGD drifted at a much 

higher rate on the two-span links the rate occurrence of a high-DGD outage event is 

higher but the outage event lasts for a much shorter duration. 

Table 2.4. Predicted relative mean time between outages (MTBO) and  
mean outage durations for different DGD tolerances. 

 3*<DGD> 3.7*<DGD> 

Link 1-2 
MTBO 

Outage duration 

 
0.413 years 

9 min 

 
106 years 

7 min 
Link 2-3 
MTBO 

Outage duration 

 
0.644 years 

14 min 

 
167 years 

11 min 
Link 1-3 
MTBO 

Outage duration 

 
0.525 years 

11 min 

 
135 years 

9 min 
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2.2.4. Long-term measurements of the three-span link 

To study the behavior of PMD on links of greater length, experiments were 

conducted to measure the instantaneous DGD on the three single-span links 

concatenated with an effective length of about 285 km. These measurements were 

possible only after placing EDFAs along two of the three links. Measurements of the 

three-span link 1-2-3 were made at wavelengths from 1535 nm to 1565 nm with a 

wavelength step of 0.1 nm and were repeated once every 23 minutes. Measurements 

were carried on for 34 days from April 13, 2004 - May 17, 2004. 

2.2.4.1. Measurement setup 

 

 

 

 

 

 

 

~ 47.5 km~ 47.5 km

EDFA EDFA EDFA 

~ 95 km ~ 47.5 km ~ 47.5 km
EDFA EDFA 

 
 

Automated 
PMD 

measurement 
setup 

shown in 
figure 2.2 

Figure 2.19. Measurement setup for characterizing the three-span link 1-2-3. 

2.2.4.2. Plot of DGD vs. wavelength and time 

 The plot in figure 2.20 shows the normalized DGD measured on the three-

span link 1-2-3 using the set up shown in figure 2.19 in color-coded format. The 

mean DGD of the link (the actual value not mentioned) was observed to satisfy the 

concatenation rule which says that the effective DGD on concatenated fiber spans is 

the square root of the sum of the squares of the mean DGD on individual fiber spans. 

It can be observed from the color map in figure 2.20 that the DGD on three-span link 

1-2-3 changes with time and wavelength. Moreover, the change in DGD with time is 

rapid just like the two-span links. This might be again due to the fact that one end of 

each of the fiber span is in the laboratory where the temperature was not maintained 

constant.  
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Figure 2.20. Measured, normalized DGD vs. wavelength  

and time for the three-span link 1-2-3. 
 

2.2.4.3. Histogram of measured DGD data 

       The histogram of the normalized DGD obtained from measured data in linear 

and log scales is shown in figure 2.21. A curve representing Maxwellian distribution 

for 1-ps mean DGD is also plotted for comparison. It can be observed from the figure 

that the histogram is in good agreement with the theoretical Maxwellian curve-fit. 

Results from the modified chi-square goodness-of-fit test (details of which are 

described in Appendix A) performed on these histograms are given in table 2.5. 

 
Table 2.5. Results from the modified chi-square test for measured  

DGD histograms on the three-span link 1-2-3. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1-2-3 100 82.36 20.74 Accept 
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Figure 2.21. Histogram of measured, 
normalized DGD data on the three-span 
link 1-2-3 in (a)linear (top) and (b) log 

(bottom) scales. 

 
Figure 2.22. Frequency-averaged DGD 

and air temperature vs. time for the 
three-span link 1-2-3. 

 
Figure 2.23. Calculated outage 

probability, Pout, and relative mean 
outage rate Rout, versus threshold/mean 

DGD for the three-span link 1-2-3. 
 

 
Figure 2.24. Calculated relative mean 
outage duration, Tout, as a function of 

threshold/mean DGD for the three-span 
link 1-2-3. 
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2.2.4.4. Mean DGD variation with time 

       The variation of frequency-averaged DGD data, denoted as <DGD>λ normalized 

by the overall mean DGD, denoted as <<DGD>λ>t and temperature with time on the 

three-span link is shown in figure 2.22.  The temperature shown in these plots is the 

hourly air temperature data for the region and not the laboratory temperature. It can 

be observed from figure 2.22 that the variation in frequency-averaged DGD on the 

link 1-2-3 is less than 20 % over the measurement period.   

2.2.4.5. System outage analysis 

The outage probability, Pout, for different threshold values is calculated from 

the Maxwellian distribution using (2.6). The mean outage rate, Rout, and the mean 

outage duration, Tout, for different threshold values are calculated from the DGD data 

measured on the three-span link using (2.7) and (2.8) respectively. The calculated 

Pout, relative Rout and relative Tout values as a function of normalized threshold are 

shown in figures 2.23 and 2.24. Table 2.6 lists the relative values of the mean time 

between outages (MTBO) and the mean outage durations for system thresholds of 3 

and 3.7 times the mean DGD. 

 

Table 2.6. Predicted relative mean time between outages (MTBO) and  
mean outage durations for different DGD tolerances. 

 3*<DGD> 3.7*<DGD> 

Link 1-2-3 
MTBO 

Outage duration 

 
0.2762 years 

6 min 

 
71 years 
4.6 min 

 
A comparison of the values from table 2.6 with those of table 2.4 and table 2.2 

by taking into the account the actual mean DGD values showed that the outage rates 

are much higher for the three-span link than for the two- and single-span links and the 

outage durations are correspondingly lower for the three-span link. However, the 

increase in the outage rates from two-span links to the three-span link is not as high as 

it is from single-span links to the two-span links. 

 32



2.3. Objective of the current work 
The objective of the current work is to expand on the common understanding 

of the temporal behavior of PMD and predict PMD-induced outage rates on long-haul 

optical fiber links. This can be achieved through a three-fold process: 

1. Simplify the expression for predicting first-order PMD outage rates given by 

Caponi et al. [1] into a simple closed-form expression that depends only on two 

parameters  

2. Enhance the existing numerical model for PMD to include the temporal 

component and then, using the enhanced model, simulate the PMD 

characteristics observed from the measurements on the seven different fiber 

configurations discussed in chapter 2 to validate the model. 

3. Using the enhanced PMD model, simulate the PMD characteristics on long-haul 

optical fiber links of different lengths and use this information along with the 

simplified first-order PMD outage rate expression to predict the outage rates on 

long-haul links and study the variation of the PMD outage rates with link length. 

Step 1 can be achieved first by determining the histograms of measured DGD 

time derivative (∆τ') numerically and fitting a standard probability density function 

(PDF) curve to them and then simplifying the integral in (2.7) using the expression 

for the standard PDF fit. In step 2, the enhancements to the PMD model include 

incorporating the knowledge of temporal and spectral nature of PMD gained through 

detailed analyses of measured DGD data on different buried fiber links discussed in 

chapter 2. The basic idea of steps 2 and 3 is to use the enhanced model first to 

simulate the temporal and spectral nature of PMD observed from the measurements 

on relatively short length fiber links and then predict the temporal and spectral 

characteristics of PMD on long-haul optical links. Using this information and the 

simplified PMD outage rate expression, first-order PMD outage rates and durations 

are predicted on long-haul optical fiber links. 
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2.3.1. Significance of the current work 

 The above-mentioned work is very significant in the sense that it enables the 

network engineers to predict quantitatively the impact of PMD, in terms of the outage 

rates, while planning ultra long-haul all optical fiber links. This work also gives 

insight into the variation of the outage rates with link length, the knowledge of which 

is very useful in designing long-haul links. Using the enhanced model it is possible to 

simulate the PMD characteristics of a long-haul optical link of arbitrary length and 

with arbitrary number of spans. 

In this report the PMD outage analysis is limited to only first-order. This does 

not mean that second- and other higher-order PMD effects are insignificant. It was 

reported [37] that the frequency dependence of PMD becomes significant only in 

systems with relatively high mean DGD values. However, first-order PMD is still an 

issue on fibers with relatively low mean DGD and it needs to be dealt with properly 

to ensure network reliability. A solid understanding of the first-order PMD outage 

analysis itself is lacking within the PMD community and as of now there is not a 

single model available that would help study the first-order outage analysis (some 

statistical models are available) and to my knowledge no group is working on such a 

thing. Hence this work will be a good step forward in understanding the effects of 

PMD on network availability.  

 Moreover, the enhanced PMD model is not limited to just first-order. Second- 

and other higher-order PMD information, including PSP information, can be 

extracted from the model, which would facilitate the higher-order PMD outage 

analysis. 
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3. SIMPLIFIED FIRST-ORDER PMD OUTAGE RATE    
    EXPRESSION 
 

3.1. The PDF of DGD time derivative (∆τ') 

  In chapter 2 the PMD-induced outage rates (Rout) on the single-span, two-span 

and the three-span links were calculated using (2.7). However, while calculating those 

outage rates the integral in (2.7) was evaluated numerically using measured DGD 

data. In order to simplify (2.7) into a closed-form expression, the next logical step is 

to study the PDF of the DGD time derivative (∆τ') and determine, if possible, a 

mathematical expression for it. Then, the expression for PDF of ∆τ' could be used to 

simplify the integral in (2.7) thereby expressing (2.7) in a closed-form.  

To determine the PDF of ∆τ', first ∆τ' values were calculated by numerically 

differentiating the measured DGD data on the seven links, discussed in section 2.3, 

and then the histograms of ∆τ' were obtained from the calculated data in linear and 

log scales, which are shown in figures 3.1 to 3.7. Through curve fitting it was 

determined emperically that these histograms closely resemble a Laplacian PDF (a 

two-sided, first-order exponential) of the form 

 ( ) τ′∆α−
τ′

α
=τ′∆ e

2
f  (3.1) 

where 
σ

=α
2  and is the Laplacian parameter with units of hours/picosecond and σ 

is the standard deviation of ∆τ'.  For comparison, Laplacian fits with corresponding α 

values are also shown in figures 3.1 to 3.7. This finding was reported in [38].To 

determine how good the agreement is between the measured ∆τ' histograms and their 

corresponding Laplacian fits, modified chi-square goodness-of-fit test (described in 

Appendix A) is applied in each case and the results from these tests are listed in table 

3.1. From the table a good agreement is evident. 
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Figure 3.1. Histogram of measured ∆τ' data from Link 1 and its Laplacian fit in 

 (a) linear scale (top) and (b) log scale (bottom). 
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Figure 3.2. Histogram of measured ∆τ' data from Link 2 and its Laplacian fit in 

 (a) linear scale (top) and (b) log scale (bottom). 
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Figure 3.3. Histogram of measured ∆τ' data from Link 3 and its Laplacian fit in 

 (a) linear scale (top) and (b) log scale (bottom). 
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Figure 3.4. Histogram of measured ∆τ' data from Link 1-2 and its Laplacian fit in 

 (a) linear scale (top) and (b) log scale (bottom). 

 39



 

 
Figure 3.5. Histogram of measured ∆τ' data from Link 2-3 and its Laplacian fit in 

(a) linear scale (top) and (b) log scale (bottom). 
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Figure 3.6. Histogram of measured ∆τ' data from Link 1-3 and its Laplacian fit in 

(a) linear scale (top) and (b) log scale (bottom). 
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Figure 3.7. Histogram of measured ∆τ' data from Link 1-2-3 and its Laplacian fit in 

(a) linear scale (top) and (b) log scale (bottom). 
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Table 3.1. Results from the modified chi-square test for measured ∆τ'  
histograms on single-, two- and three- span links. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1 81 65.18 29.98 Accept 
Link 2 86 69.68 15.93 Accept 
Link 3 83 66.98 51.61 Accept 

Link 1-2 100 82.36 79.1 Accept 
Link 2-3 95 77.82 76.65 Accept 
Link 1-3 100 82.36 266.22 Reject 

Link 1-2-3 84 67.88 59.82 Accept 
 

 

3.2. Closed-form expression for Rout

Using the Laplacian distribution as the ∆τ' PDF, a closed form solution for the 

integral in (2.7), and hence Rout, can be obtained. Substituting (3.1) for the PDF of 

∆τ', the integral in (2.7) evaluates to 1/α. Then the expression for Rout in (2.7) reduces 

to  

 ( thout f
2
1R τ∆
α

= τ∆ )  (3.2) 

The significance of (3.2) is that the mean outage rate due to PMD on any fiber route 

can be readily estimated given its mean DGD and Laplacian parameter α, greatly 

simplifying the route's PMD-induced outage analysis. Whereas the fiber's mean DGD 

may be known from its PMD coefficient (ps/√km), the Laplacian parameter α must 

be estimated from a time series of DGD measurements made on each fiber. The 

simplified closed-form expression in (3.2) for Rout was also published in our journal 

paper [38]. Figures 3.8 to 3.14 show an excellent agreement between the relative Rout 

values calculated using numerical integration in (2.7) and the values calculated using 

the closed-form expression in (3.2). 
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Figure 3.8. Comparison of relative Rout values on Link 1  

calculated using (2.7) and (3.2). 

 
Figure 3.9. Comparison of relative Rout values on Link 2  

calculated using (2.7) and (3.2). 
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Figure 3.10. Comparison of relative Rout values on Link 3  

calculated using (2.7) and (3.2). 

 
Figure 3.11. Comparison of relative Rout values on Link 1-2  

calculated using (2.7) and (3.2). 
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Figure 3.12. Comparison of relative Rout values on Link 2-3  

calculated using (2.7) and (3.2). 

 
Figure 3.13. Comparison of relative Rout values on Link 1-3  

calculated using (2.7) and (3.2). 
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Figure 3.14. Comparison of relative Rout values on Link 1-2-3  

calculated using (2.7) and (3.2). 

 
3.3. Required measurement period to obtain a good estimate of α 

 The closed-form expression of (3.2) enables us to calculate first-order PMD 

outage rates using the mean DGD and the Laplacian parameter α of the fiber link 

under study. The next step would be to determine how long the measurements should 

be made to get a good estimate of α. To study this, ∆τ' data sets from the 

concatenated links were divided into smaller sets of different sizes each 

corresponding to a different observation period. Using these smaller sets of ∆τ' data 

the normalized values of α (the actual value being 1) were determined. Figure 3.15 

shows the normalized α values as a function of observation period. From the figure it 

can be said that measurements need to be made for 10 to 14 days to estimate the value 

of α to within 10% of its actual value. 
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Figure 3.15.  Normalized α values as a function of observation period. 
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4. NUMERICAL MODELING OF PMD 
4.1. Purpose 
 In the previous chapter it was shown that the DGD time derivative has a 

Laplacian PDF and the first-order PMD mean outage rate is inversely proportional to 

the Laplacian parameter (α). To understand how the mean outage rate varies with link 

length, it is necessary to determine how the Laplacian parameter varies with link 

length. Predicting PMD-induced outages on realistic link lengths (> 500 km) through 

PMD measurements would require long-term access to such a link and is not 

economically feasible at this time. Hence, the approach taken here is to enhance the 

numerical model of section 2.1.5 by including a temporal component that would 

simulate the PMD behavior observed from the buried dark fiber PMD measurements 

and to use this model to determine the variation of the Laplacian parameter, and 

hence the mean outage rate, with link length.  

 

4.2. Base model 
 The numerical model given by Dal Forno et al. discussed in section 2.1.5 is 

used as the base model for simulating the DGD temporal and spectral characteristics 

on buried standard single-mode fibers. This model, if used as described by Dal Forno 

et al. [34], would give insight into the Maxwellian nature of DGD and the non-

periodic DGD spectral dependence.  However, to match the temporal and spectral 

characteristics measured on a particular fiber, the free variables in the model (namely 

b, φn, and αn) should be varied in accordance with the temperature and other 

environmental variations over the measurement period.   

 

4.3. Significance of the model parameters 
4.3.1. Segment length hn

The parameter hn is the length of the nth fiber segment. It should be set to a 

value that is greater than the fiber coupling length (following the mode-coupling 
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concept), which is typically in the range of a few tens of meters to a kilometer. Using 

a fixed value for hn of each segment will result in an artificial periodicity in the 

spectral domain. This is illustrated in figures 4.1 and 4.2. Figures 4.1 and 4.2 were 

obtained from simulations using the base model mentioned in the previous section 

and by varying the angle φn of only a few segments (this concept is explained in detail 

in a later section) as a function of two different temperature profiles (not shown here), 

one with slower rate of change and other with faster rate of change respectively. A 

total of 100 fiber segments, of which 4 of them having temperature dependent φn, and 

a PMD coefficient (b) of 0.7 ps/√km were used in the simulation. Periodicity in 

spectral domain is evident in figures 4.1 and 4.2. 

 

 

DGD (ps)

Figure 4.1. DGD colormap obtained from simulations using fixed  
segment lengths and a temperature profile with slower 

 variations, showing periodicity in spectral domain. 
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DGD (ps)

 
Figure 4.2. DGD colormap obtained from simulations using fixed  
segment lengths and a temperature profile with faster variations,  

showing the periodicity is spectral domain. 
 
 

Making the segment length a random variable will remove this artificial 

periodicity in the spectral domain. Dal Forno et al. [34] showed that using a Gaussian 

variable for the segment length, with a mean value of total link length/number of 

segments and variance of 20% of mean value would remove the above discussed 

periodicity. Figures 4.3 and 4.4 illustrate this concept. The simulation parameters 

used were the same as with figures 4.1 and 4.2 except that the segment lengths were 

made Gaussian. Clearly figures 4.3 and 4.4 do not show any periodicity in spectral 

domain as was seen in figures 4.1 and 4.2. 
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DGD (ps)

 
Figure 4.3. DGD colormap obtained from simulations using Gaussian  

segment lengths and a temperature profile with slower variations;  
periodicity in spectral domain is absent. 

 

DGD (ps)

Figure 4.4. DGD colormap obtained from simulations using Gaussian  
segment lengths and a temperature profile with faster variations;  

periodicity in spectral domain is absent. 

 52



4.3.2. Number of fiber segments N 

 The parameter N in the model denotes the total number of fiber segments. The 

model described in section 2.1.5 represents a SMF as a concatenation of smaller 

length fiber segments. The number of fiber segments (N) is the link length (L) 

divided by the mean segment length (h) (N=L/h). For a given link length, using a very 

large value for mean segment length (much larger than the coupling length) leads to a 

small value for N and this would affect the repeatability of the simulations. Hence, 

the mean segment length should be chosen judiciously such that it is larger than the 

coupling length but not too large to force a smaller value for N. 

4.3.3. PMD coefficient ‘b’ 

 The parameter ‘b’ in the model is the PMD coefficient of the fiber. For multi-

span link simulations, if the PMD coefficients of all the spans are different then the 

corresponding values of ‘b’ for different spans should be used in the simulation. 

Varying the parameter ‘b’ as a function of temperature will result in a drift in the 

spectral domain. This concept is illustrated below. Figure 4.5 shows hourly 

temperature for a location obtained from [39]. Studies [40], [41] have reported values 

for the relative temperature sensitivity of DGD in the range of 5 x 10-4 ºC-1 to 7 x 10-4 

ºC-1. Using a value of 6 x 10-4 ºC-1 for the relative temperature sensitivity of DGD and 

an initial value of 0.7 ps/√km for ‘b’, the corresponding variation in ‘b’ in response to 

the temperature profile in figure 4.5 is shown is figure 4.6. Figure 4.7 shows the plot 

of DGD vs. wavelength and time obtained using the PMD model with the following 

parameters: 95 km link length; 100 fiber segments, the size of the each segment 

randomly generated from a Gaussian distribution around the mean length of 0.95 km 

(coupling length); 35 nm wavelength band (1535-1565 nm); two different sets of 

uniform random values for αn and φn and the PMD coefficient profile shown in figure 

4.6. It is clear from figure 4.7 that DGD drifts either to the left or right along the 

wavelength axis corresponding to a change in the PMD coefficient induced by the 

temperature variation. 
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Hourly 
temperature 

(˚C) 

Measurement #

Figure 4.5. Measured hourly temperature at one location [39]. 

 
Figure 4.6. PMD coefficient variation modeled based on the  

temperature profile in figure 4.5. 
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Figure 4.7. DGD colormap obtained using the modeled PMD coefficient in figure 4.6. 

 

The DGD drift in the spectral domain discussed above was also observed in 

the measured DGD colormaps shown in chapter 2. Figure 4.8 shows the measured 

DGD colormap on single-span fiber link 1 and the variation of air temperature over 

the measurement period. Looking at the plots in figure 4.8 closely, particularly 

between 50 to 60 day period (figure 4.9), a dip in the temperature over that period and 

a drift in the DGD towards right on the wavelength axis can be observed. 
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Figure 4.8. DGD colormap measured over a 95-km buried fiber link and hourly 

 air temperature vs. time over the same 86-day measurement period. 
 

 
Figure 4.9. Figure 4.8 zoomed in to show the period including days 40 to 65. 
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4.3.4. Coupling angle αn

 The parameter αn in the model is the coupling angle between the segment 

axes. For a given buried fiber, the coupling angles are determined by the fiber 

manufacturing and cabling processes and also the installation procedure. However, 

once the fiber is buried the coupling angles remain the same and do not vary 

significantly over time. As mentioned earlier in section 2.5.1, the parameter αn can be 

modeled as a uniform random variable between 0 and 2π and the same set of values 

can be used to repeat the simulations in time. However, if it is required to model 

different fibers, different sets of uniform random variables could be used for the 

coupling angles of different fibers. 

4.3.5. Angle φn

 The parameter φn in the model accounts for the environmental fluctuations 

along the fiber and is the crucial parameter that determines the temporal 

characteristics of PMD. For fiber links that experience time-invariant environmental 

fluctuations, φn can be modeled just as a uniform random variable between 0 and 2π. 

But for fiber links that experience time variant environmental fluctuations (the 

common scenario) other terms that are functions of different environmental factors 

should be included to obtain the temporal characteristics of PMD. 

 Studies [42] [43] have shown a strong correlation between DGD and air 

temperature variations without any time lag and such correlation was attributed to a 

small number of segments of buried fiber (like the man holes, bridge attachments, 

EDFA huts, etc.) exposed to the air temperature variations. The number of segments 

exposed to the air temperature variations could be anywhere from 4 to 10 per span 

depending on the fiber route. This implies that temporal variations of PMD could be 

modeled by varying the parameter φn of only a few segments of fiber. 

 Although temperature is the most dominant environmental factor that 

determines the temporal nature of PMD, there are other stress-inducing factors like 

atmospheric pressure, rain events, surface vibrations, etc. that also affect the temporal 

nature of PMD, but only in a small way. The effects of temperature could be modeled 
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by making φn a linear function of temperature and the effects of all other 

environmental factors can be modeled by adding a Gaussian variable to it, invoking 

the central limit theorem. Hence the parameter φn for a few segments of each span can 

be modeled as  

 [ ] ( ) [ ]var_G,0NFeTemperaturAir*k20Un +°+π=φ  (4.1)              

where U[0 2π] is a uniformly distributed random variable from 0 to 2π, N[0, G_var] 

is a Gaussian random variable with a mean of 0 and variance of G_var (units: 

radian2), and k is the proportionality constant with units of radians/ºF. 

 The proportionality constant k is link-dependent and would vary from link to 

link. The Gaussian variance G_var depends on how fast the environmental factors 

other than temperature are changing and could vary from time to time. As mentioned 

before, the linear temperature term in (4.1) accounts for the temporal variations due to 

few segments being exposed to the air temperature, but, in reality the fiber segments 

are not directly exposed to the open air and the intervening enclosures (conduit, hut, 

man hole, etc.) buffer the temperature variation to some extent. Hence, raw air 

temperature data could be filtered using a low pass filter to remove any high 

frequency terms before using the data in the model. However, as can be seen in the 

later sections the use of this filter is not critical for accurate modeling of longer, 

multi-span fiber links.  

 If the parameters αn and φn are modeled using different, independent uniform 

random value sets in time, then the DGD values obtained from the simulation will be 

totally uncorrelated and noise-like as shown in figure 4.10. The DGD colormap in 

figure 4.10 is obtained from a simulation with the following parameters: L = 100 km, 

hn = 1 km (fixed), N = 100, b = 2.7 ps/√km, spectral band is 1480 nm to 1580 nm 

with 0.1 nm step and different, independent sets of uniform random values for αn and 

φn for each of 100 simulation runs. But using the base model described in section 

2.5.1 along with the profiles for b, αn, and φn discussed in this chapter, it is possible to 

model the temporal characteristics of PMD accurately and obtain a Laplacian PDF for 

the DGD time derivative (∆τ'). The free parameters here are the proportionality 
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constant k, Gaussian variance G_var, the filter bandwidth and the number of time 

varying segments.  

 
Figure 4.10. DGD colormap from a simulation using different, independent 

 uniform random value sets for αn, and φn for each simulation run. 
  

 Using a very small number of time varying segments (less than 4) could result 

in a non-Laplacian PDF for DGD time derivative with a strong central peak around 

the mean ∆τ' value of zero. Also, DGD under-sampling - DGD 

measurements/samples taken at intervals greater than the correlation time - would 

result in non-Laplacian PDF like the Gaussian distribution for ∆τ'. Examples of these 

cases are shown in later chapters. 

 In the next two chapters the results from simulations of different fiber links 

using the enhanced numerical model and the temporal profiles of the model 

parameters discussed in this chapter are presented.  
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5. ENHANCED-MODEL VALIDATION 
 This is the first of the two chapters on the results obtained from simulations 

using the enhanced numerical model discussed in chapter 4. In this chapter the 

coefficients for the model parameters will be determined for the 7 fiber configurations 

used for measurements discussed in chapter 2 that yield simulated DGD data that are 

comparable to the measured DGD data. Through this process the ability of the 

simulation to predict the overall behavior of a fiber link can be established. In chapter 

7, this validated simulation model will be used to simulate DGD data for link lengths 

greater than 3 spans in order to evaluate PMD-induced outage rates on longer fiber-

optic links.  

5.1. Model accuracy metrics 
The following metrics will be used to gauge the accuracy of the simulation results: 

• Mean DGD (time and wavelength averaged DGD) value – how do the 

simulation results compare with measured data 

• Goodness of Maxwellian PDF fit to the simulated DGD data 

• Goodness of Laplacian PDF fit to the simulated DGD time derivative data 

• Laplacian parameter value – how does the value from simulated data match 

with the corresponding value from measured data 

• Decorrelation time and bandwidth – how do these values from simulations 

compare with those from measurements 

• Overall appearance of the DGD colormap – how do the colormaps from 

simulations compare with those of measurements 

For each fiber configuration, plots showing the temperature profile used, the 

normalized DGD colormap, the normalized DGD histogram and Maxwellian fit in 

linear and log scales, the DGD time derivative histogram and Laplacian fit in linear 

and log scales are shown. A comparison is drawn between the simulation results and 

the measurements in chapter 2 to show the accuracy of the numerical model. 
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5.2. Model parameters 
 For all the fiber configurations discussed in this chapter as well as the next 

chapter the following profiles are used for the parameters of the numerical model: the 

segment length hn is modeled as a Gaussian variable with mean value determined by 

the PMD coefficient and the link length and with a variance of 20 % of mean value; 

the PMD coefficient ‘b’ is modeled as a time-invariant parameter specific to each 

link; each span is modeled as a concatenation of 500 fiber segments (N); the coupling 

angle αn is modeled as a time-invariant uniform random variable between 0 and 

2π; the static part of the parameter φn is modeled as a time-invariant uniform random 

variable between 0 and 2π.  

The free parameters, namely, the proportionality constant k, the Gaussian 

variance G_var, the filter bandwidth and the number of time varying segments, are 

link and temperature profile dependent. A fixed number (four) of equally-spaced, 

time varying segments are used per span, hence a single-span link would have 4 time 

varying segments, and a two-span link would have 8 time varying segments and so 

on. The other free parameters are varied following the general understanding of the 

parameters to obtain desired results, in this case results closely matching the 

measured results. The exact values of these parameters for each fiber configuration 

are determined by trial and error.  

 

5.3. Individual (single-span) Links 
 In this section the simulation results for the three single-span links are 

discussed. Each of these links is 95 km long. A 110-nm wavelength band (1510 nm to 

1625 nm) is used in all of the simulations. 

5.3.1. Single-span link 1 

 Table 5.1 shows the values of the free parameters used in the simulation of 

link 1. A Butterworth low-pass filter is used to filter the raw temperature data. A filter 

bandwidth parameter of 1 corresponds to half of the sampling frequency and the filter 
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bandwidth parameter in table 5.1 shows the bandwidth relative to half the sampling 

frequency. A value of 0.001 indicates that it is a very narrow low pass filter. 

Table 5.1.  Values of free parameters for link 1. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.2 4 0.001 π/22 

 

 Figure 5.1 shows the measured hourly air temperature (top plot) at one 

location over the 86-day measurement period for link 1 obtained from National 

Climatic Data Center website [36] and the corresponding filtered temperature (bottom 

plot) used in the simulation. 

 

 
Figure 5.1. (a). Hourly air temperature; (b) Corresponding filtered temperature. 
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Figure 5.2. (a). Normalized DGD colormap obtained from link 1 simulation 

 
Figure 5.2. (b) Normalized DGD colormap obtained from link 1 measurements 

 shown in chapter 2, reproduced here for comparison. 
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 Figure 5.2 (a) shows the normalized DGD (DGD normalized by the mean 

DGD) colormap obtained from link 1 simulation using the filtered temperature profile 

shown in figure 5.1 (b) and the parameter values shown in table 5.1. The colormap 

obtained from measurements on link 1, shown in chapter 2, is repeated here as figure 

5.2 (b) for comparison. Simulations in time were repeated at 1 hour intervals but 

DGD was calculated every 3 hours to be consistent with the measurements on link 1 

which were repeated every 2 hours and 55 minutes. Comparing the colormaps in 

figure 5.2 it is clear that both the colormaps look very similar although not exactly the 

same. Both the colormaps have the same features like DGD varying rapidly with 

wavelength but rather slowly with time and the high DGD events being spectrally 

localized. The actual mean DGD obtained from simulation, although not mentioned 

here, was very close (< 1 % difference) to the value from the measurements. 

 Figures 5.3 (a) and 5.3 (b) show the histogram of simulated normalized DGD 

and its Maxwellian fit for link 1 in linear and log scales respectively. It can be 

observed that the histogram has a shape consistent with the Maxwellian distribution 

except at the very end of the tail where not enough independent samples are present. 

Results from the modified chi-square test on the simulated DGD data are included in 

table 5.9. 
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Figure 5.3. Histogram of simulated normalized DGD and its Maxwellian fit for link 1      

in (a) linear scale (top) and (b) log scale (bottom). 
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α = 8.7 hr/ps 

 
Figure 5.4. Histogram of simulated ∆τ' and it Laplacian fit for link 1 in  

(a) linear scale (top) and (b) log scale (bottom). 
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Figures 5.4 (a) and 5.4 (b) show the histogram of simulated ∆τ' and its 

Laplacian fit for link 1 in linear and log scales respectively. It can be observed that 

there is a good agreement between the ∆τ' histogram and the Laplacian distribution, 

and this agreement between the two is much better than from measured data 

presented in chapter 2. Results from the modified chi-square test on the simulated ∆τ' 

data are included in table 5.10. The Maxwellian and Laplacian fits shown in this 

report are not optimized fits (like the least-squares fit) and the parameter values 

governing these distributions are calculated either from measured or simulated data.  

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.4, calculated from simulated data is 8.7 hr/ps which is close to the value of 

7.5 hr/ps obtained from measured data. A comparison of the relative first-order mean 

outage rates using these α values and the simplified outage rate expression (3.2) is 

shown in figure 5.5. From the figure it is clear that the values show good agreement. 

 

αMeas = 7.5 hr/ps 
αSim  = 8.7 hr/ps 

Figure 5.5. Comparison of relative Rout values from measured data and simulation 
data on link 1 calculated using the simplified outage rate expression. 
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The decorrelation time and decorrelation bandwidth are determined from 

simulated and measured data for link 1 and these are the full width half maximum 

(FWHM) values of the time autocorrelation and frequency autocorrelation functions 

of measured/simulated DGD data respectively. The decorrelation time from the 

simulated data was around 4 days which is slightly different from the value from the 

measured data of 4.6 days. The decorrelation bandwidth from the simulated data 

differed from the value from measured data by about 30 %, although a better 

agreement between the two is desired. 

5.3.2. Single-span link 2 

Table 5.2 shows the values of the free parameters used in the simulation of 

link 2. The same narrowband filter as in the case of link 1 is used to filter the raw 

temperature data.  

Table 5.2.  Values of free parameters for link 2. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.2 4 0.001 π/48 

  

 
Figure 5.6. (a). Hourly air temperature; (b) Corresponding filtered temperature. 
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Figure 5.7. (a) Normalized DGD colormap obtained from link 2 simulation. 

 
Figure 5.7. (b) Normalized DGD colormap obtained from link 2 measurements 

 shown in chapter 2, reproduced here for comparison. 
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Figure 5.6 shows the measured hourly air temperature (top plot) at one 

location over the 14-day measurement period for link 2 discussed in chapter 2 and the 

corresponding filtered temperature (bottom plot) used in the simulation. 

Figure 5.7 (a) shows the normalized DGD colormap obtained from link 2 

simulation using the filtered temperature profile shown in figure 5.6 (b) and the 

parameter values shown in table 5.2. The colormap obtained from measurements on 

link 2, shown in chapter 2, is repeated here as figure 5.7 (b) for comparison. 

Simulations in time were repeated at 1 hour intervals and DGD was calculated every 

hour. This is different from the measurements on link 2 which were repeated every 1 

hour and 25 minutes. Comparing the colormaps in figure 5.7 it is clear that both the 

colormaps look very similar in the sense that there is no significant temporal change 

in DGD over the 14-day period. A slight drift across the wavelengths observed in the 

measured DGD colormap is absent in the simulated DGD colormap and this could be 

attributed to using a fixed value of ‘b’ in the simulations. The actual mean DGD 

obtained from simulation, although not mentioned here, was close (< 5 % difference) 

to the value from the measurements. 

Figures 5.8 (a) and 5.8 (b) show the histogram of simulated normalized DGD 

and its Maxwellian fit for link 2 in linear and log scales respectively. It can be 

observed that the agreement between the histogram and the Maxwellian distribution 

is not very good and this could be because there are not enough independent DGD 

samples over the 14-day observation period. Results from the modified chi-square test 

on the simulated DGD data are included in table 5.9. 
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Figure 5.8. Histogram of simulated normalized DGD and its Maxwellian fit  

for link 2 in (a) linear scale (top) and (b) log scale. 
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α = 4.57 hr/ps 

 
Figure 5.9. Histogram of simulated ∆τ' and it Laplacian fit for link 2 in  

(a) linear scale (top) and (b) log scale (bottom). 
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Figures 5.9 (a) and 5.9 (b) show the histogram of simulated ∆τ' and its 

Laplacian fit for link 2 in linear and log scales respectively. It is evident from the 

figures that there is a good agreement between the ∆τ' histogram and the Laplacian 

distribution, and this agreement between the two is much better than from measured 

data presented in chapter 2. Results from the modified chi-square test on the 

simulated ∆τ' data are included in table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.9, calculated from simulated data is 4.57 hr/ps which is close to the value 

of 4.25 hr/ps obtained from measured data. Figure 5.10 shows a comparison of the 

relative first-order mean outage rates using these α values and the simplified outage 

rate expression (3.2). A good agreement between the values calculated from 

simulated and measured data is evident from the figure. 

 

αMeas = 4.25 hr/ps 
αSim  = 4.57 hr/ps 

Figure 5.10. Comparison of relative Rout values from measured data and simulation 
data on link 2 calculated using the simplified outage rate expression. 
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The decorrelation time from the simulated data was around 0.87 days which is 

very close to the value from the measured data of 0.83 days. The decorrelation 

bandwidth from the simulated data differed from the value from measured data by 

about 10 %. 

5.3.3. Single-span link 3 

Table 5.3 shows the values of the free parameters used in the simulation of 

link 3. A filter parameter of 0.002 is used in this case which implies a slightly wider 

low pass filter than in the cases of links 1 and 2.  

Table 5.3.  Values of free parameters for link 3. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.2 4 0.002 π/120 

 

 
Figure 5.11. (a). Hourly air temperature; (b) Corresponding filtered temperature. 
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Figure 5.12. (a) Normalized DGD colormap obtained from link 3 simulation. 

 
Figure 5.12. (b) Normalized DGD colormap obtained from link 3 measurements 

shown in chapter 2, reproduced here for comparison. 
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Figure 5.11 shows the measured hourly air temperature (top plot) at one 

location over the 64-day measurement period for link 3 discussed in chapter 2 and the 

corresponding filtered temperature (bottom plot) used in the simulation. 

Figure 5.12 (a) shows the normalized DGD colormap obtained from link 3 

simulation using the filtered temperature profile shown in figure 5.11 (b) and the 

parameter values shown in table 5.3. The colormap obtained from measurements of 

link 3, shown in chapter 2, is repeated here as figure 5.12 (b) for comparison. As in 

the case of link 2, simulations in time were repeated at 1 hour intervals and DGD was 

calculated every hour. This is different from the measurements on link 3 which were 

repeated every 1 hour and 25 minutes. Comparing the colormaps in figure 5.12 it is 

clear that both the colormaps look very similar except for the slight drift across the 

wavelengths observed only in the measured DGD colormap. The absence of this drift 

in the simulated DGD colormap could again be attributed to using a fixed value of ‘b’ 

in the simulations. The simulated DGD colormap shows an interesting feature around 

day 9 that also appears in the measured DGD colormap. The actual mean DGD 

obtained from simulation, although not mentioned here, was close (< 5 % difference) 

to the value from the measurements. 

Figures 5.13 (a) and 5.13 (b) show the histogram of simulated normalized 

DGD and its Maxwellian fit for link 3 in linear and log scales respectively. It can be 

observed that the agreement between the histogram and the Maxwellian distribution 

is not very good and a better agreement between the two is desired. Results from the 

modified chi-square test on the simulated DGD data are included in table 5.9. 
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Figure 5.13. Histogram of simulated normalized DGD and its Maxwellian fit 

 for link 3 in (a) linear scale (top) and (b) log scale (bottom). 
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α = 12.17 hr/ps 

 
Figure 5.14. Histogram of simulated ∆τ' and it Laplacian fit for link 3 in 

 (a) linear scale (top) and (b) log scale (bottom). 
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Figures 5.14 (a) and 5.14 (b) show the histogram of simulated ∆τ' and its 

Laplacian fit for link 3 in linear and log scales respectively. It can be observed that 

there is a good agreement between the ∆τ' histogram and the Laplacian distribution, 

and this agreement between the two is much better than from measured data 

presented in chapter 2. Results from the modified chi-square test on the simulated ∆τ' 

data are included in table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.14, calculated from simulated data is 12.17 hr/ps which is close to the 

value of 10.9 hr/ps obtained from measured data. A comparison of the relative first-

order mean outage rates using these α values and the simplified outage rate 

expression (3.2) is shown in figure 5.15. From the figure it is clear that the values 

show good agreement. 

 

αMeas = 10.9 hr/ps 
αSim  = 12.17 hr/ps 

Figure 5.15. Comparison of relative Rout values from measured data and simulation 
data on link 3 calculated using the simplified outage rate expression. 

 79



The decorrelation time from the simulated data was around 4.83 days which is 

very close to the value from the measured data of 5.04 days. The decorrelation 

bandwidth from the simulated data differed from the value from measured data by 

about 15 %. 

5.4 Concatenated (multi-span) Links 
 In this section the simulation results for the three two-span links and the only 

three-span link are discussed. Each span is 95 km long and so each of the two-span 

links is 190 km long and the three-span link is 285 km long. A 30-nm EDFA band 

(1535 nm to 1565 nm) is used in all of the simulations. 

5.4.1. Two-span link 1-2 

Table 5.4.  Values of free parameters for link 1-2. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.11 8 0.08 π/135 

Table 5.4 above shows the values of the free parameters used in the simulation 

of two-span link 1-2. The filter used here is comparatively wider than the filter used 

in the single-span cases. Simulations were repeated every 20 minutes and so a smaller 

value of Gaussian standard deviation compared to the single-span links was needed. 

 
Figure 5.16. (a). Interpolated air temperature; (b) Corresponding filtered temperature. 
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Figure 5.17. (a) Normalized DGD colormap obtained from link 1-2 simulation. 

 
Figure 5.17. (b) Normalized DGD colormap obtained from link 1-2 measurements 

shown in chapter 2, reproduced here for comparison. 
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Figure 5.16 shows the measured, interpolated air temperature (top plot) at one 

location over the 18-day measurement period for link 1-2 discussed in chapter 2 and 

the corresponding filtered temperature (bottom plot) used in the simulation. 

Measurements on this link were repeated every 23 minutes and to be consistent 

simulations were repeated every 20 minutes. The hourly temperature data were 

interpolated linearly to obtain temperature samples every 20 minutes. 

The normalized DGD colormap obtained from link 1-2 simulations is shown 

in figure 5.17 (a) and the corresponding colormap obtained from measurements, 

shown in chapter 2, is reproduced here as figure 5.17 (b) for comparison. As 

mentioned earlier, the sampling interval for simulations was 20 minutes whereas it 

was 23 minutes for measurements. Looking at figures 5.17 (a) and 5.17 (b), it can be 

observed that both the colormaps are very similar. They both show fast temporal and 

spectral variation compared to single-span links and also they both show temporal 

periodicity. The actual mean DGD obtained from simulation (not mentioned here), 

was within 2 % of the value from the measurements. 

Figures 5.18 (a) and 5.18 (b) show the histogram of simulated normalized 

DGD and its Maxwellian fit for link 1-2 in linear and log scales respectively. It can be 

observed from the figures that the agreement between the histogram and the 

Maxwellian distribution is good. Results from the modified chi-square test on the 

simulated DGD data are included in table 5.9. 
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Figure 5.18. Histogram of simulated normalized DGD and its Maxwellian fit for 

 link 1-2 in (a) linear scale (top) and (b) log scale (bottom). 

 83



 

 

α = 0.69 hr/ps 

 
Figure 5.19. Histogram of simulated ∆τ' and it Laplacian fit for link 1-2 in 

 (a) linear scale (top) and (b) log scale (bottom). 
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The histogram of simulated ∆τ' and its Laplacian fit for link 1-2 in linear and 

log scales are shown in figures 5.19 (a) and 5.19 (b) respectively. A good agreement 

between the simulated ∆τ' histogram and the Laplacian distribution is evident from 

the figures. Results from the modified chi-square test on the simulated ∆τ' data are 

included in table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.19, calculated from simulated data is 0.69 hr/ps which is close to the value 

of 0.6 hr/ps obtained from measured data. Figure 5.20 shows a comparison of the 

relative first-order mean outage rates using these α values and the simplified outage 

rate expression (3.2). A good agreement between the values calculated from 

simulated and measured data is evident from the figure. 

 

αMeas = 0.6 hr/ps 
αSim  = 0.69 hr/ps 

Figure 5.20. Comparison of relative Rout values from measured data and simulation 
data on link 1-2 calculated using the simplified outage rate expression. 
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The decorrelation time from the simulated data was around 1.66 hours which 

is very close to the value from the measured data of 1.53 hours. The decorrelation 

bandwidth from the simulated data differed from the value from measured data by 

about 10 %. 

5.4.2. Two-span link 2-3 

Table 5.5.  Values of free parameters for link 2-3. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.1 8 0.08 π/120 

 

Table 5.5 above shows the values of the free parameters used in the simulation 

of two-span link 2-3. The filter used here is same as that of link 1-2.  

 
Figure 5.21. (a). Interpolated air temperature; (b) Corresponding filtered temperature. 
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Figure 5.22. (a) Normalized DGD colormap obtained from link 2-3 simulation. 

 
Figure 5.22. (b) Normalized DGD colormap obtained from link 2-3 measurements 

shown in chapter 2, reproduced here for comparison. 
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Figure 5.21 shows the measured, interpolated air temperature (top plot) at one 

location over the 21-day measurement period for link 2-3 discussed in chapter 2 and 

the corresponding filtered temperature (bottom plot) used in the simulation. 

Measurements on this link were repeated every 23 minutes and to be consistent 

simulations were repeated every 20 minutes. The hourly temperature data were 

interpolated linearly to obtain temperature samples every 20 minutes. 

Figure 5.22 (a) shows the normalized DGD colormap obtained from link 2-3 

simulation and the corresponding colormap obtained from measurements, shown in 

chapter 2, is reproduced here as figure 5.22 (b) for comparison. Comparing figures 

5.22 (a) and 5.22 (b), it can be observed that both the colormaps look very similar. 

Both of them show fast temporal and spectral variation and also temporal periodicity. 

But the locations of the high DGD events are different in both cases. The actual mean 

DGD obtained from simulation (not mentioned here), was within 3 % of the value 

from the measurements. 

The histogram of simulated normalized DGD and its Maxwellian fit for link 

2-3 in linear and log scales are shown in figures 5.23 (a) and 5.23 (b) respectively. It 

can be observed from the figures that the agreement between the histogram and the 

Maxwellian distribution is good. Results from the modified chi-square test on the 

simulated DGD data are included in table 5.9. 
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Figure 5.23. Histogram of simulated normalized DGD and its Maxwellian fit  

for link 2-3 in (a) linear scale (top) and (b) log scale (bottom). 
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α = 0.98 hr/ps 

 
Figure 5.24. Histogram of simulated ∆τ' and it Laplacian fit for link 2-3 in  

(a) linear scale (top) and (b) log scale (bottom). 
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Figures 5.24 (a) and 5.24 (b) show the histogram of simulated ∆τ' and its 

Laplacian fit for link 2-3 in linear and log scales respectively. It is clear from the 

figures that the simulated ∆τ' histogram and the Laplacian distribution agree well, 

although the agreement at the tails is not very good. Results from the modified chi-

square test on the simulated ∆τ' data are included in table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.24, calculated from simulated data is 0.98 hr/ps which is close to the value 

of 0.95 hr/ps obtained from measured data. Figure 5.25 shows a comparison of the 

relative first-order mean outage rates using these α values and the simplified outage 

rate expression (3.2). A good agreement between the values calculated from 

simulated and measured data is evident from the figure. 

 

αMeas = 0.95 hr/ps 
αSim  = 0.98 hr/ps 

Figure 5.25. Comparison of relative Rout values from measured data and simulation 
data on link 2-3 calculated using the simplified outage rate expression. 
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The decorrelation time from the simulated data was around 3 hours which is 

very close to the value from the measured data of 2.3 hours. The decorrelation 

bandwidth from the simulated data matched exactly with the value from measured 

data. 

5.4.3. Two span link 1-3 

Table 5.6 below shows the values of the free parameters used in the 

simulation of link 1-3. The filter used here is same as that of the other two-span links 

discussed earlier.  

Table 5.6.  Values of free parameters for link 1-3. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.08 8 0.08 π/120 

 

 
Figure 5.26. (a). Interpolated air temperature; (b) Corresponding filtered temperature. 
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Figure 5.27. (a) Normalized DGD colormap obtained from link 1-3 simulation. 

 
Figure 5.27. (b) Normalized DGD colormap obtained from link 1-3 measurements 

shown in chapter 2, reproduced here for comparison. 
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Figure 5.26 shows the measured, interpolated air temperature (top plot) at one 

location over the 16-day measurement period for link 1-3 discussed in chapter 2 and 

the corresponding filtered temperature (bottom plot) used in the simulation. 

Measurements on this link were repeated every 23 minutes and to be consistent 

simulations were repeated every 20 minutes. The hourly temperature data were 

interpolated linearly to obtain temperature samples every 20 minutes. 

Figure 5.27 (a) shows the normalized DGD colormap obtained from link 1-3 

simulation and the corresponding colormap obtained from measurements shown in 

chapter 2 is reproduced here as figure 5.27 (b) for comparison. Looking at figures 

5.27 (a) and 5.27 (b), it can be observed that both the colormaps are very similar in 

the sense that they show fast temporal and spectral variation and also temporal 

periodicity. But the locations of the high DGD events are different in both cases. The 

actual mean DGD obtained from simulation (not mentioned here), was within 1 % of 

the value from the measurements. 

The histogram of simulated normalized DGD and its Maxwellian fit for link 

1-3 in linear and log scales are shown in figures 5.28 (a) and 5.28 (b) respectively. It 

can be observed from the figures that the agreement between the histogram and the 

Maxwellian distribution is good. Results from the modified chi-square test on the 

simulated DGD data are included in table 5.9. 
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Figure 5.28. Histogram of simulated normalized DGD and its Maxwellian fit 

 for link 1-3 in (a) linear scale (top) and (b) log scale (bottom). 
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α = 0.8 hr/ps 

 
Figure 5.29. Histogram of simulated ∆τ' and it Laplacian fit for link 1-3 in  

(a) linear scale (top) and (b) log scale (bottom). 
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The histogram of simulated ∆τ' and its Laplacian fit for link 2-3 in linear and 

log scales are shown in figures 5.29 (a) and 5.29 (b) respectively. It is clear from the 

figures that the simulated ∆τ' histogram and the Laplacian distribution agree well. 

Results from the modified chi-square test on the simulated ∆τ' data are included in 

table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.29, calculated from simulated data is 0.8 hr/ps which is close to the value 

of  0.7 hr/ps obtained from measured data. Figure 5.30 shows a comparison of the 

relative first-order mean outage rates using these α values and the simplified outage 

rate expression (3.2). A good agreement between the values calculated from 

simulated and measured data is evident from the figure. 

 

 

αMeas = 0.7 hr/ps 
αSim  = 0.8 hr/ps 

Figure 5.30. Comparison of relative Rout values from measured data and simulation 
data on link 1-3 calculated using the simplified outage rate expression. 
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The decorrelation time from the simulated data was around 2 hours which is 

very close to the value from the measured data of 2.3 hours. The decorrelation 

bandwidth from the simulated data matched exactly with the value from measured 

data. 

5.4.4. Three-span link 1-2-3 

Table 5.7 below shows the values of the free parameters used in the 

simulation of the three-span link 1-2-3. The filter used here is same as that of the two-

span links discussed earlier.  

Table 5.7.  Values of free parameters for link 1-2-3. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.15 12 0.08 π/90 

 

 
Figure 5.31. (a). Interpolated air temperature; (b) Corresponding filtered temperature. 
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Figure 5.32. (a) Normalized DGD colormap obtained from link 1-2-3 simulation. 

 
Figure 5.32. (b) Normalized DGD colormap obtained from link 1-2-3 measurements 

shown in chapter 2, reproduced here for comparison. 
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Figure 5.31 shows the measured, interpolated air temperature (top plot) at one 

location over the 34-day measurement period for link 1-2-3 discussed in chapter 2 

and the corresponding filtered temperature (bottom plot) used in the simulation. 

Measurements on this link were repeated every 23 minutes and to be consistent 

simulations were repeated every 20 minutes. The hourly temperature data were 

interpolated linearly to obtain temperature samples every 20 minutes. 

Figure 5.32 (a) shows the normalized DGD colormap obtained from link 1-2-3 

simulation and the corresponding colormap obtained from measurements, shown in 

chapter 2, is reproduced here as figure 5.32 (b) for comparison. Comparing figures 

5.32 (a) and 5.32 (b), it can be observed that both the colormaps are very similar in 

the sense that they show fast temporal and spectral variation and also temporal 

periodicity. However, the spectral drift observed in the measured colormap is absent 

in the simulated colormap and this could be because a time-invariant fixed value of 

PMD coefficient ‘b’ is used for each span. The actual mean DGD obtained from 

simulation (not mentioned here), was within 3 % of the value from the measurements. 

The histogram of simulated normalized DGD and its Maxwellian fit for link 

1-2-3 in linear and log scales are shown in figures 5.33 (a) and 5.33 (b) respectively. 

It can be observed from the figures that the agreement between the histogram and the 

Maxwellian distribution is very good. Results from the modified chi-square test on 

the simulated DGD data are included in table 5.9. 
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Figure 5.33. Histogram of simulated normalized DGD and its Maxwellian fit 

 for link 1-2-3 in (a) linear scale (top) and (b) log scale (bottom). 
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α = 0.35 hr/ps 

 
Figure 5.34. Histogram of simulated ∆τ' and it Laplacian fit for link 1-2-3 in 

 (a) linear scale (top) and (b) log scale (bottom). 
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The histogram of simulated ∆τ' and its Laplacian fit for link 1-2-3 in linear 

and log scales are shown in figures 5.34 (a) and 5.34 (b) respectively. It can be 

observed that the simulated ∆τ' histogram and the Laplacian distribution agree well. 

Results from the modified chi-square test on the simulated ∆τ' data are in table 5.10. 

The Laplacian parameter (α) value corresponding to the Laplacian fit shown 

in figure 5.34, calculated from simulated data is 0.35 hr/ps which is close to the value 

of 0.38 hr/ps obtained from measured data. Figure 5.35 shows a comparison of the 

relative first-order mean outage rates using these α values and the simplified outage 

rate expression (3.2). A good agreement between the values calculated from 

simulated and measured data is evident from the figure. 

 

αMeas = 0.38 hr/ps 
αSim  = 0.35 hr/ps 

Figure 5.35. Comparison of relative Rout values from measured data and simulation 
data on link 1-2-3 calculated using the simplified outage rate expression. 
 

The decorrelation time from the simulated data was around 1.33 hours which 

is slightly different than the value from the measured data of 1.83 hours. The 

decorrelation bandwidth from the simulated data matched exactly with the value from 

measured data. 

Simulation results discussed in sections 5.3 and 5.4 are summarized in table 5.8. 
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Table 5.8. Summary of simulation results discussed in sections 5.3 and 5.4. 

 

                                                                                                                                               Percent difference between measurements and simulationsFree parameters of the model 

Link 
configuration 

Constant 
k 

# of time-
varying  
sections 

Relative  
filter BW 
parameter

Gaussian
standard
deviation

Mean DGD 
Laplacian 
parameter

α 

Decorrelation
time 

Decorrelation
bandwidth 

Link 1 0.2 4 0.001 π/22 1 % 14 % 13 % 30 % 

Link 2 0.2 4 0.001 π/48 5 % 7 % 4.5 % 10 % 

Link 3 0.2 4 0.002 π/120 5 % 10.5 % 11 % 15 % 

Link 1-2 0.11 8 0.08 π/135 2 % 13 % 8 % 10 % 

Link 2-3 0.1 8 0.08 π/120 3 % 3 % 23 % 0 % 

Link 1-3 0.08 8 0.08 π/120 1 % 12.5 % 13 % 0 % 

Link 1-2-3 0.15 12 0.08 π/90 3 % 8 % 27 % 0 % 
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5.5. Goodness-of-fit test results 
 Results from the modified chi-square test, discussed in Appendix A, applied 

to the simulated DGD and ∆τ' data on the single-, two- and three-span links discussed 

in sections 5.3 and 5.4 are shown in tables 5.9 and 5.10 respectively. In all but one 

case, the hypotheses (that simulated DGD data has Maxwellian PDF and the 

simulated ∆τ' data has Laplacian PDF) are accepted. 

 

Table 5.9. Results from the modified chi-square test applied to simulated DGD data. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1 100 82.36 30.08 Accept 
Link 2 100 82.36 114.75 Reject 
Link 3 100 82.36 39.82 Accept 

Link 1-2 100 82.36 82.35 Accept 
Link 2-3 100 82.36 79.46 Accept 
Link 1-3 100 82.36 79.83 Accept 

Link 1-2-3 100 82.36 40.58 Accept 
 

Table 5.10. Results from the modified chi-square test applied to simulated ∆τ' data. 

Fiber 
Configuration 

Degrees of
Freedom 

Critical Value 
At Significance Level

α = 0.9 

chi-square 
Test Statistic 
From Data 

Hypothesis
Accept or 
Reject? 

Link 1 82 66.08 6.24 Accept 
Link 2 83 66.98 3.23 Accept 
Link 3 80 64.28 3.31 Accept 

Link 1-2 84 67.88 42.55 Accept 
Link 2-3 87 70.58 65.16 Accept 
Link 1-3 76 60.69 49.12 Accept 

Link 1-2-3 100 82.36 80.21 Accept 
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5.6. Conclusions 
From the simulation results discussed in this chapter, it can be concluded that 

the enhanced numerical model described in chapter 4 reproduced very well the DGD 

temporal and spectral behavior observed from measurements, particularly on multi-

span links. The histograms of DGD and ∆τ' from multi-span link simulations showed 

good agreement with the expected Maxwellian and Laplacian distributions 

respectively. The mean DGD and Laplacian parameter (α) values from simulations 

were very close to those obtained from the measurements. The simulated DGD 

colormaps looked very similar to the measured colormaps except for the spectral 

drift. However, it is clear from the simulation results that this spectral drift does not 

have any noticeable effect on first-order PMD outage analysis, which is the focus of 

this report. The decorrelation time and decorrelation bandwidth values from 

simulations were also close to that of the values from the measurements. 

 In the case of single-span links, the agreement between the simulated DGD 

histograms and the expected Maxwellian distribution is only marginal in some cases, 

but the simulated ∆τ' histograms showed good agreement with the Laplacian 

distribution. The simulated DGD colormaps showed all of the major features 

observed in measured colormaps. The values of mean DGD, Laplacian parameter (α), 

decorrelation time and decorrelation bandwidth obtained from simulations showed 

good agreement with those from measurements. However, it is not clear why a very 

narrowband filter is required for single-span links to filter the temperature data 

compared to multi-span links. This issue needs to be investigated further. 

 Hence the numerical model presented in chapter 4 can be used to study the 

variation of Laplacian parameter, and thereby the first-order PMD outage rates, with 

link length. Chapter 6 shows the results from such a simulation study on multi-span 

links of different lengths. 
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6. SIMULATION STUDY OF FIRST-ORDER PMD  
    OUTAGE RATE VARIATION WITH LINK LENGTH 
 
 In this chapter simulation results on multi-span links of different lengths are 

discussed. The objective here is to study the variation of Laplacian parameter, which 

is a crucial parameter in determining the first-order PMD outage rates as per the 

simplified PMD outage rate expression (3.2), with link length. For this study, a set of 

reference temperature profiles at different locations along the link and a set of values 

for the free parameters of the numerical model are required. To simplify the study, 

only a single reference temperature profile is used for the simulations discussed in 

this chapter, but it is fairly straightforward to modify the model to include a set of 

temperature profiles representing the temperature dynamics across the entire link. 

 For all of the simulations discussed in this chapter, the temperature profile 

from the 34-day measurement period of the three-span link 1-2-3 presented in 

chapters 2 and 5 is used as the reference profile and it is linearly interpolated as 

needed depending on the sampling interval. Also, the values of the free parameters 

from the three-span case are used in the simulations and are listed again in table 6.1. 

Different values in the range of π/90 to π/120 are used for Gaussian standard 

deviation depending on the sampling interval. A span length of 95 km is assumed for 

all the simulations. Each span is modeled as a concatenation of 500 shorter fiber 

segments of which 4 of them have a time varying, temperature-dependent φn 

component. A 30-nm EDFA band (1535 nm to 1565 nm) is used in all of the 

simulations.  The PMD coefficients of the three single-span links b1, b2, and b3 (the 

actual values not reported in this report) are cycled through for multi-span link spans. 

For instance, the sequence of PMD coefficients used for the 5 spans in a five-span 

link simulation is b1-b2-b3-b1-b2. The values of the segment length hn, the coupling 

angle αn, and the phase φn (static as well as time-variant components) are derived 

from a single set of values used for the link with highest number of spans. For 

example, in a five-span simulation the values of hn, αn, and φn for the first four spans 

 107



are same as the values used in a four-span link simulation. The idea behind this is to 

have links with large number of spans to be extensions of links with smaller number 

of spans so that it is easy to study the variation of Laplacian parameter with link 

length. 

 Next, the plots and values of metrics obtained from simulation of 2-span (190 

km), 4-span (380 km), 5-span (475 km), 7-span (665 km), 9-span (855 km) and 11-

span (1045 km) links are presented. Later, the variation of Laplacian parameter with 

link length observed from simulations and its significance is discussed. 

 

Table 6.1.  Values of free parameters used for simulations. 

Proportionality 
constant  

k (radians/ºF) 

Number of 
time-varying 

sections 

Relative filter 
bandwidth 
parameter 

Gaussian 
std. deviation 

(radians) 
0.15 4 per span 0.08 π/90 to π/120 

 

6.1. Two-span link 
 This link has a length of 190 km and is modeled as a concatenation of 1000 

short fiber segments of which 8 of them have a time varying φn component. 

Simulations are performed with 20 minute time increments and a value of π/90 is 

used for Gaussian standard deviation. 

 Figure 6.1 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.2 (a) and 6.2 (b) show the normalized DGD histogram and 

its Maxwellian fit in linear and log scales respectively. 
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Figure 6.1. Normalized DGD colormap obtained from two-span link simulation. 

 
Figure 6.2. (a) Histogram of simulated normalized DGD and its  

Maxwellian fit for two-span link in linear scale. 
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Figure 6.2. (b) Histogram of simulated normalized DGD and its  

Maxwellian fit for two-span link in log scale. 

 
Figure 6.3. (a) Histogram of simulated ∆τ' and it Laplacian fit 

 for two-span link in linear scale. 
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Figure 6.3. (b) Histogram of simulated ∆τ' and it Laplacian fit 

 for two-span link in log scale. 
 

 Figures 6.3 (a) and 6.3 (b) show the simulated ∆τ' histogram and its Laplacian 

fit in linear and log scales respectively. These figures show good agreement between 

the ∆τ' histogram and the Laplacian distribution. The Laplacian parameter (α) value 

corresponding to the Laplacian fits in figures 6.4 and 6.5, calculated from the 

simulated ∆τ' data is 0.504 hr/ps. This value is comparable to the α values of the two-

span links presented in chapter 5.  
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6.2. Four-span link 
 This link has a length of 380 km and is modeled as a concatenation of 2000 

short fiber segments of which 16 of them have a time varying φn component. 

Simulations are repeated every 20 minutes and a value of π/90 is used for Gaussian 

standard deviation. 

 Figure 6.4 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.5 (a) and 6.5 (b) show the normalized DGD histogram and 

its Maxwellian fit in linear and log scales respectively. 

 

 
Figure 6.4. Normalized DGD colormap obtained from four-span link simulation. 
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Figure 6.5. Histogram of simulated normalized DGD and its Maxwellian fit 

 for four-span link in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.6. Histogram of simulated ∆τ' and it Laplacian fit for four-span 

 link in (a) linear scale (top) and (b) log scale (bottom). 
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 Figures 6.6 (a) and 6.6 (b) show the simulated ∆τ' histogram and its Laplacian 

fit in linear and log scales respectively. These figures show good agreement between 

the ∆τ' histogram and the Laplacian distribution. The Laplacian parameter (α) value 

corresponding to the Laplacian fits in figure 6.6, calculated from the simulated ∆τ' 

data is 0.23 hr/ps.  

 

6.3. Five-span link 
 This link has a length of 475 km and is modeled as a concatenation of 2500 

short fiber segments of which 20 of them have a time varying φn component. 

Simulations are repeated every 10 minutes and a value of π/105 is used for Gaussian 

standard deviation. 

 Figure 6.7 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.8 (a) and 6.8 (b) show the normalized DGD histogram and 

its Maxwellian fit in linear and log scales respectively. 

 
Figure 6.7. Normalized DGD colormap obtained from five-span link simulation. 
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Figure 6.8. Histogram of simulated normalized DGD and its Maxwellian fit 

 for five-span link in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.9. Histogram of simulated ∆τ' and it Laplacian fit for five-span link  

in (a) linear scale (top) and (b) log scale (bottom). 
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 Figures 6.9 (a) and 6.9 (b) show the simulated ∆τ' histogram and its Laplacian 

fit in linear and log scales respectively. These figures show good agreement between 

the ∆τ' histogram and the Laplacian distribution except at the center. This discrepancy 

is discussed in more detail later in this chapter. The Laplacian parameter (α) value 

corresponding to the Laplacian fits in figure 6.9, calculated from the simulated ∆τ' 

data is 0.159 hr/ps.  

 
6.4. Seven-span link 
 This link has a length of 665 km and is modeled as a concatenation of 3500 

short fiber segments of which 28 of them have a time varying φn component. 

Simulations are repeated every 10 minutes and a value of π/105 is used for Gaussian 

standard deviation. 

 Figure 6.10 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.11 (a) and 6.11 (b) show the normalized DGD histogram 

and its Maxwellian fit in linear and log scales respectively. 

 
Figure 6.10. Normalized DGD colormap obtained from seven-span link simulation. 
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Figure 6.11. Histogram of simulated normalized DGD and its Maxwellian fit for 

seven-span link in (a) linear scale (top) and (b) log scale (bottom). 

 119



 

 
Figure 6.12. Histogram of simulated ∆τ' and it Laplacian fit for seven-span link  

in (a) linear scale (top) and (b) log scale (bottom). 
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Figures 6.12 (a) and 6.12 (b) show the simulated ∆τ' histogram and its 

Laplacian fit in linear and log scales respectively. These figures show good 

agreement between the ∆τ' histogram and the Laplacian distribution except at the 

center same as in the five-span case. The Laplacian parameter (α) value 

corresponding to the Laplacian fits in figure 6.12, calculated from the simulated ∆τ' 

data is 0.115 hr/ps. 

 

6.5. Nine-span link 
 This link has a length of 855 km and is modeled as a concatenation of 4500 

short fiber segments of which 36 of them have a time varying φn component. 

Simulations are repeated every 10 minutes and a value of π/105 is used for Gaussian 

standard deviation. 

 Figure 6.13 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.14 (a) and 6.14 (b) show the normalized DGD histogram 

and its Maxwellian fit in linear and log scales respectively. 

 
Figure 6.13. Normalized DGD colormap obtained from nine-span link simulation. 
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Figure 6.14. Histogram of simulated normalized DGD and its Maxwellian fit for 

 nine-span link in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.15. Histogram of simulated ∆τ' and it Laplacian fit for nine-span link  

in (a) linear scale (top) and (b) log scale (bottom). 
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Figures 6.15 (a) and 6.15 (b) show the simulated ∆τ' histogram and its 

Laplacian fit in linear and log scales respectively. These figures show good 

agreement between the ∆τ' histogram and the Laplacian distribution except at the 

center same as in the five-span and seven-span cases. The Laplacian parameter (α) 

value corresponding to the Laplacian fits in figure 6.15, calculated from the simulated 

∆τ' data is 0.101 hr/ps. 

 

6.6. Eleven-span link 
 This link has a length of 1045 km and is modeled as a concatenation of 4400 

short fiber segments of which 44 of them have a time varying φn component. 

Simulations are repeated every 10 minutes and a value of π/105 is used for Gaussian 

standard deviation. 

 Figure 6.16 shows the normalized DGD colormap obtained from the two-span 

link simulation. Figures 6.17 (a) and 6.17 (b) show the normalized DGD histogram 

and its Maxwellian fit in linear and log scales respectively. 

 
Figure 6.16. Normalized DGD colormap obtained from eleven-span link simulation. 
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Figure 6.17. Histogram of simulated normalized DGD and its Maxwellian fit for 

eleven-span link in (a) linear scale (top) and (b) log scale (bottom). 

 125



 

 
Figure 6.18. Histogram of simulated ∆τ' and it Laplacian fit for eleven-span link  

in (a) linear scale (top) and (b) log scale (bottom). 
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Figures 6.18 (a) and 6.18 (b) show the simulated ∆τ' histogram and its 

Laplacian fit in linear and log scales respectively. These figures show good 

agreement between the ∆τ' histogram and the Laplacian distribution except at the 

center same as in the five-span, seven-span and nine-span cases. The Laplacian 

parameter (α) value corresponding to the Laplacian fits in figure 6.18, calculated 

from the simulated ∆τ' data is 0.081 hr/ps. 

 

6.7. Effect of under-sampling 

 Looking back at the ∆τ' histograms and Laplacian fits in figures 6.9, 6.12, 

6.15 and 6.18 corresponding to the five-span, seven-span, nine-span and eleven-span 

links, we observe that the central peak of each of the histograms doesn’t match with 

its Laplacian fits while the rest of the histogram shows good agreement with the 

Laplacian fit. This is the effect of under-sampling. This could be rectified by 

decreasing the time interval between the consecutive simulations. However, with the 

current version of the Matlab code and the computing resources available, it takes 

prohibitively long (of the order of weeks) to run the above-mentioned cases with a 

much smaller sampling interval. Instead to show that the phenomenon observed in the 

above-mentioned figures is in fact due to under-sampling the four-span link case is 

repeated with different sampling intervals that are longer than the one corresponding 

to figure 6.6, which is 20 minutes. Simulation specifications are exactly same as 

discussed in section 6.2 except for the sampling interval and the Gaussian standard 

deviation which is varied in accordance with the sampling interval (the longer the 

sampling interval, the larger the standard deviation). The results obtained are 

discussed next. 

6.7.1. Four-span link with 30-minute sampling interval 

 The plots and the values of the metrics obtained from four-span link 

simulation with 30-minute sampling interval are presented in this section. The 

Gaussian standard deviation used in this case was π/60. Figure 6.19 shows the 

normalized colormap from the simulations and it looks very similar to the colormap 
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corresponding to the case of 20-minute sampling interval. Figures 6.20 (a) and 6.20 

(b) show the normalized DGD histogram and it Maxwellian fit in linear and log scales 

respectively and a good agreement between them is evident from the figures. 

 

 
Figure 6.19. Normalized DGD colormap obtained from four-span link 

 simulation with 30-minute sampling interval. 
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Figure 6.20. Histogram of simulated normalized DGD and its  

Maxwellian fit for four-span link with 30-minute sampling  
interval in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.21. Histogram of simulated ∆τ' and it Laplacian fit for four-span link with 

30-minute sampling interval in (a) linear scale (top) and (b) log scale (bottom). 
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Figures 6.21 (a) and 6.21 (b) show the simulated ∆τ' histogram and its Laplacian fit in 

linear and log scales respectively. Comparing these figures with the corresponding 

figures from the 20-minute sampling interval case, figures 6.6 (a) and 6.6 (b), the 

central peak of the histogram in the 30-minute case does not match with the Laplacian 

fit whereas it matches well with the fit in the 20-minute case. Since the sampling 

interval is the main difference between these cases this disagreement can be attributed 

to under-sampling. The Laplacian parameter (α) value for the 30-minute case is 0.26 

hr/ps, which is close to the value from the 20-minute case (0.23 hr/ps) and this is 

because the above-mentioned disagreement is not that big and the histogram still 

closely resembles the Laplacian PDF. As can be seen next, the α value will vary 

significantly from the 20-minute case value (the actual value) as the above-mentioned 

disagreement increases. 

6.7.2. Four-span link with 40-minute sampling interval 

 The plots and the values of the metrics obtained from four-span link 

simulation with 40-minute sampling interval are presented in this section. The 

Gaussian standard deviation used in this case was π/45. Figure 6.22 shows the 

normalized colormap from the simulations and it looks very similar to the colormaps 

corresponding to 20- and 30-minute cases. Figures 6.23 (a) and 6.23 (b) show the 

normalized DGD histogram and it Maxwellian fit in linear and log scales respectively 

and a good agreement between them is evident from the figures. 

 Figures 6.24 (a) and 6.24 (b) show the simulated ∆τ' histogram and its 

Laplacian fit in linear and log scales respectively. Comparing these figures with the 

corresponding figures from the 20-minute sampling interval case, figures 6.6 (a) and 

6.6 (b), the disagreement between the central peak of the histogram and its Laplacian 

fit in the 40-minute case is much greater than it was between 20- and 30-minute 

cases. The Laplacian parameter (α) value for the 40-minute case is 0.30 hr/ps, which 

is different from the 20-minute case (0.23 hr/ps). 
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Figure 6.22. Normalized DGD colormap obtained from four-span link 

 simulation with 40-minute sampling interval. 
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Figure 6.23. Histogram of simulated normalized DGD and its  

Maxwellian fit for four-span link with 40-minute sampling 
 interval in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.24. Histogram of simulated ∆τ' and it Laplacian fit for four-span link with 

40-minute sampling interval in (a) linear scale (top) and (b) log scale (bottom). 
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6.7.3. Four-span link with 60-minute sampling interval 

 The plots and the values of the metrics obtained from four-span link 

simulation with 60-minute sampling interval are presented in this section. The 

Gaussian standard deviation used in this case was π/30. Figure 6.25 shows the 

normalized colormap from the simulations and it looks very similar to the colormaps 

corresponding to 20-, 30- and 40-minute cases. Figures 6.26 (a) and 6.26 (b) show the 

normalized DGD histogram and it Maxwellian fit in linear and log scales respectively 

and a good agreement between them is evident from the figures. 

 Figures 6.27 (a) and 6.27 (b) show the simulated ∆τ' histogram and its 

Laplacian fit in linear and log scales respectively. Comparing these figures with the 

corresponding figures from the 20-minute sampling interval case, figures 6.6 (a) and 

6.6 (b), the disagreement between the central peak of the histogram and its Laplacian 

fit in the 60-minute case is much greater than it was in the other two cases discussed 

above. Also, the shape of the histogram has changed and it looks more like a 

Gaussian distribution. The Laplacian parameter (α) value for the 60-minute case is 

0.37 hr/ps, which is quite different from the 20-minute case (0.23 hr/ps). 

 
Figure 6.25. Normalized DGD colormap obtained from four-span link 

 simulation with 60-minute sampling interval. 
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Figure 6.26. Histogram of simulated normalized DGD and its 
 Maxwellian fit for four-span link with 60-minute sampling  
interval in (a) linear scale (top) and (b) log scale (bottom). 
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Figure 6.27. Histogram of simulated ∆τ' and it Laplacian fit for four-span link with 

60-minute sampling interval in (a) linear scale (top) and (b) log scale (bottom). 
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 If we increase the sampling interval further the same trend will continue i.e., 

the ∆τ' histogram will take a true Gaussian shape and the α value will be quite 

different from the actual value. The appearance of the Gaussian distribution makes 

more sense by taking a look at the generalized exponential PDF. Both Laplacian and 

Gaussian distributions are special cases of the generalized exponential PDF. The 

generalized exponential PDF is given by  

 

  (6.1)

where v is the mode, Γ(.) is Gamma function, m is the mean and σ is the standard 

deviation.  For Laplacian PDF v = 1 and for Gaussian PDF v = 2. As v approaches 

infinity, the distribution becomes uniform. This is illustrated in figure 6.28.  

 

Figure 6.28. Laplacian, Gaussian an
as special cases of g

 

v = 1
 

d uniform dis
eneralized ex

 

v = 2
 

v → infinite 

tributions (zero mean, unit variance) 
ponential PDF [44]. 
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 Hence due to under-sampling, the ∆τ' histogram deviates from the Laplacian 

PDF and approaches a Gaussian PDF first and for long enough sampling interval it 

will approach a uniform distribution. 

 The ∆τ' histograms for the five-span, seven-span, nine-span and eleven-span 

links discussed earlier in this chapter look similar to the ∆τ' histogram from four-span 

case with 30-minute sampling interval in the sense that the disagreement between the 

histogram central peak and it fit is little. Hence the actual values of the Laplacian 

parameter (α) value for those cases will be very close yet lower than the values 

mentioned earlier in the chapter at their respective locations. And so these values can 

be used in the study of variation of α parameter with link length. 

 

6.8. Variation of Laplacian parameter with link length 

 Table 6.2 lists the values of the Laplacian parameter (α) for all the cases 

discussed in this chapter and the three-span link discussed in chapter 5. The length 

and the number of spans of each link are also listed in the table. 

Table 6.2. α values for different link lengths. 

 
Number
of spans

 
Link length

(km) 

Laplacian 
Parameter (α)

(hr/ps) 
2 190 0.504 

3 285 0.35 

4 380 0.23 

5 475 0.159 

7 665 0.115 

9 855 0.101 

11 1045 0.081 

 

 Figure 6.29 shows the α values in table 6.1 plotted as a function of link 

length. A curve representing (A/Link length), where A is a constant with units (km-
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hr)/ps and link length in km, is also shown in figure 6.29 for comparison. From the 

figure it is clear that the (A/Link length) curve approximates the variation of α with 

link length. Hence the Laplacian parameter is inversely proportional of the link 

length. For the special case considered in this report where all the spans are of equal 

length 95 km and each span has exactly the same number of fiber segments with a 

time varying φn component, the constant ‘A’ turns out to be equal to the span length 

and so the fitted curve reduces to α = (1/Numberofspans), the Laplacian parameter is 

inversely proportional to the number of spans in the link. 

 

 

Fit:  ( )kmLengthLink
A  

where A = 95 km-hr/ps 

 

Figure 6.29. Laplacian parameter as a function of link length and (A / Link length) fit. 
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6.9. Variation of first-order PMD outage rates with link length 
The simplified first-order PMD outage rate expression as given by (3.2) is    

        ( )thout f
2
1R τ∆
α

= τ∆   (6.2) 

Substituting  ( )kmLengthLink
A

=α  , (6.2) reduces to 

 ( ) ( thout f
A2

kmLengthLinkR τ∆= τ∆ )  (6.3) 

From the expression of Maxwellian PDF, f∆τ(∆τth) is given by      
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3

2
th

2th e32f            (6.4) 

where <∆τ> is the mean DGD of the link. 

For the special case of equal span lengths and same number of time varying segments 

for each span the expression simplifies to  

                                               ( thout f
2

spansofNumberR τ∆= τ )                        (6.5) 

The simplified expression for first-order PMD outage rate in (6.3) is very significant 

in the sense that using this the outage rates can be calculated on any optical fiber link 

given the length and mean DGD (or the PMD coefficient) of the link. This is best 

illustrated in the following example. 

6.9.1. Example scenario 

Consider a scenario with the following specifications: 

    Bit rate = 40 Gbps  

 bit period = 25 ps 

  Link PMD coefficient ‘b’ = 0.1 ps/√km 

  Span length = 80 km; assume equal length spans 

  Assume all spans have equal number of time varying segments 

 Constant A in (6.3) = 80 km-hr/ps 
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Assume two different 40 Gbps receivers, Rx1 and Rx2, with Rx1 having a DGD 

threshold of 6.25 ps (1/4th of bit period) and Rx2 having a DGD threshold of 8.33 ps 

(1/3rd of bit period). Also, assume that the optical fiber is the major contributor of the 

link DGD and all the optical components along the link have insignificant DGD. 

Figure 6.30 shows the evolution of the Laplacian parameter (α) with link length and 

figure 6.31 shows the evolution of mean DGD with link length for the example 

scenario. The outage rates (Rout) as a function of link length, calculated using (6.3), 

for both the receivers are shown in figures 6.32 and 6.33 in linear and log scales 

respectively. Figure 6.34 shows the same Rout values as a function of normalized 

receiver DGD threshold (receiver DGD threshold divided by the mean DGD 

determined at different points along the link). 

 

 
Figure 6.30. α evolution with link length for the example in section 6.9.1. 
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Figure 6.31. Mean DGD evolution with link length for the example in section 6.9.1. 

 
Figure 6.32. Rout vs. link length for Rx1 and Rx2 in linear scale  

for the example in section 6.9.1. 
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Figure 6.33. Rout vs. link length for Rx1 and Rx2 in log scale  

for the example in section 6.9.1. 

 
Figure 6.34. Rout vs. Rx DGD threshold / Mean DGD for Rx1 and Rx2  

in log scale for the example in section 6.9.1. 

 144



Table 6.3. Predicted outage rates for the 40 Gbps receiver Rx1 with a DGD threshold 
of 6.25 ps discussed in the example in section 6.9.1. 

 
Link 

length 
(km) 

 

Mean 
DGD 
(ps) 

α 
(hr/ps) 

Rx1 DGD 
threshold / 
Mean DGD 

Rout  
for Rx1 

(Outages 
per year) 

Mean Time 
Between Outages 

(MTBO) 
Roughly one 
outage in ... 

 
Outage 
duration 

Tout
(minutes)

200 1.41 0.4 4.42 7.77 x 10-6 Few millenniums 5.91 

400 2 0.2 3.13 1.38 9 months 6.15 

600 2.45 0.13 2.55 71.1 5 days 6.30 

800 2.83 0.1 2.21 489.15 18 hours 6.43 

1000 3.16 0.08 1.98 1517 6 hours 6.54 

1200 3.46 0.07 1.80 3172 3 hours 6.65 

1400 3.74 0.06 1.67 5310 1 and ½ hours 6.76 

1600 4 0.05 1.56 7743 1 hour 6.86 

 

Table 6.4. Predicted outage rates for the 40 Gbps receiver Rx2 with a DGD threshold 
of 8.33 ps discussed in the example in section 6.9.1. 

 
Link 

length 
(km) 

 

Mean 
DGD 
(ps) 

α 
(hr/ps) 

Rx2 DGD 
threshold / 
Mean DGD 

Rout  
for Rx2 

(Outages 
per year) 

Mean Time 
Between Outages 

(MTBO) 
Roughly one 
outage in ... 

 
Outage 
duration 

Tout
(minutes)

200 1.41 0.4 5.89 5.7 x 10-14 Never  7 days 

400 2 0.2 4.17 1.6 x 10-4 Few centuries 4.4 

600 2.45 0.13 3.4 0.20 5 years 4.65 

800 2.83 0.1 2.95 6.96 1 and ½ months 4.66 

1000 3.16 0.08 2.63 56.7 6 days 4.72 

1200 3.46 0.07 2.40 225.7 1 and ½ days 4.78 

1400 3.74 0.06 2.23 598 15 hours 4.83 

1600 4 0.05 2.08 1231 7 hours 4.88 
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Tables 6.3 and 6.4 show the α, mean DGD, normalized Rx DGD threshold 

and the outage rate values in figures 6.30 - 6.34 for specific link lengths for Rx1 and 

Rx2 respectively. These tables also show the mean time between outages (MTBO) 

and the outage duration Tout values calculated using (2.6) and (2.8). Looking at the 

outage rate curves in figures 6.32 – 6.34, it is clear that the outage rates increase 

monotonically with link length. However, we have observed that this monotonic 

nature is valid only when the receiver DGD threshold is greater than the mean DGD 

of the link, which is typically the case in reality. This result will have great impact on 

the network design of major carriers like Sprint who are pushing for high-speed, ultra 

long-haul, all optical fiber links that could span 1500 to 2000 km. The above results 

indicate that for such longer link lengths it is extremely important to do PMD outage 

analysis and develop sophisticated PMD mitigation strategies that can ensure network 

reliability before higher bit rates (40 Gbps and above) can be transported on them. 

6.9.2. A special case 

 Consider a special case where the ratio between the receiver DGD threshold 

and the link mean DGD is maintained a constant even as link length is increased, for 

example, a DGD threshold of 4 ps for a 400-km link with 2 ps mean DGD (ratio of 2) 

and a DGD threshold of 8 ps for a 1600-km link with 4 ps mean DGD (ratio of 2). For 

this special case, which is not very realistic, a simple relation exits between outage 

rate Rout and the link length. From (6.4) it is clear that if a constant ratio is maintained 

between receiver DGD threshold and the mean DGD, f∆τ(∆τth)  is inversely 

proportional to the mean DGD. Also, the mean DGD of a link is directly proportional 

to the square root of the link length and hence from (6.2) to (6.4) it is evident that Rout 

is directly proportional to the square root of the link length 

                                                )km(LengthLinkR out ∝                                       (6.6) 

It should be noted that this special case also agrees with the monotonic increase of 

outage rates with link length mention in section 6.91. 

 

 

 146



7. Conclusions and Future work 
7.1. Conclusions 
 The work mentioned in section 2.3 has been completed successfully, which 

led to some very useful results. These results were achieved in three steps. First, by 

analyzing the measured DGD data on different single-, two- and three-span links it 

was determined empirically that DGD time derivative (∆τ') has a Laplacian PDF and 

using this, the expression for first-order PMD mean outage rates given by Caponi et 

al. [1] was reduced to a simple analytical expression that depends on only two 

parameters that are link-dependent, namely mean DGD and Laplacian parameter. 

Second, the basic PMD numerical model given by Dal Forno et al. [34] was enhanced 

to include the temporal component to it which would accurately simulate the PMD 

characteristics on buried standard single-mode fibers. The temporal component is 

composed of a linear function of air temperature, the dominant factor, and a Gaussian 

random variable that accounts for other factors. This enhanced model was validated 

by comparing the simulation results from the 7 different link configurations used for 

measurements with the corresponding measured results and verifying the accuracy of 

the simulated results. Third, the validated, enhanced PMD model was used to model 

the PMD characteristics on long-haul fiber-optic links of different lengths. The results 

from these simulations were used to study the variation of the Laplacian parameter, 

and hence the first-order PMD outage rates, with link length. 

 From the study it was determined that the Laplacian parameter is inversely 

related to the link length and the analysis using the simplified outage rate expression 

in (3.2) showed that the first-order PMD outage rates increase monotonically with the 

link length provided the receiver DGD threshold is greater than the link mean DGD. 

This is a very important finding which will have a great impact on the network design 

of all the major carriers that are pushing for high-speed, all-optical, ultra long-haul 

optical fiber links. The above finding implies that realizing such links requires 

sophisticated PMD mitigation strategies to ensure network reliability.  
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 Also, the effects of under-sampling on the shape of ∆τ' histogram/PDF were 

also discussed. Under-sampling leads to a non-Laplacian PDF for ∆τ' like the 

Gaussian PDF first and eventually, for a low enough sampling rate, the uniform PDF. 

This is due to the fact that Laplacian, Gaussian and uniform PDFs are all special cases 

of the generalized exponential PDF. 

 

7.2. Future work 
 This report addressed the basic issue of modeling the temporal PMD behavior 

on long-haul optical fiber links to predict the first-order PMD outage rates. However, 

there is ample scope to build on this research work and include much finer details to 

the model. A list of possible future work ideas are given below: 

• All of the simulation cases discussed in this report used only one temperature 

profile corresponding to one location along the fiber link. However, while 

modeling PMD on long-haul links it is more realistic to use multiple 

temperature profiles in the simulation, since temperature profiles could be 

different for different locations along the fiber link. Adding this detail to the 

model is straight forward. 

• Although the actual mean DGD values of the fiber links discussed in this 

report were not reported, moderately high values of PMD coefficient were 

used in the simulations. It would be interesting to see if the results would be 

any different on fiber links with very low PMD coefficients. 

• If long-haul optical links are accessible for making measurements over long 

periods of time, the monotonic increase in the outage rates with link length, 

determined through simulations in this report, could be verified through 

measurements. 

• Single-span link simulations required a much narrower filter compared to 

multi-span links to filter the raw temperature data so as to accurately model 

PMD characteristics on them. This issue has not been addressed in this report, 

but needs to be investigated further. 
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• Although this work focused only on first-order PMD outage analysis, higher-

order outage analysis is also very important. The PMD model discussed in this 

report could be used to extract higher-order PMD data that is needed for 

higher-order PMD outage analysis. 

• In all of the simulation cases discussed in this report, a fixed number of fiber 

segments per span were modeled as having a time varying φn component. To 

be more realistic this parameter could be modeled as a Gaussian or a uniform 

random variable. It would be interesting to see if the results would be any 

different because of this change. 

• Also, a fixed value of the PMD coefficient ‘b’ was used in all of the 

simulation cases discussed in this report. However, this could be made 

temperature-dependent to replicate the spectral drift observed from the 

measurements. This detail could be critical for higher-order outage analysis. 
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APPENDIX A 
Modified chi-square goodness-of-fit test 
 Several goodness-of-fit tests, like the chi-square test, Anderson-Darling test, 

Kolmogorov-Smirnov test, etc. are available to test if a sample of data belongs to a 

specific distribution. While some tests are applicable to only continuous distributions 

or to only certain specific distributions, chi-square test can be applied to any uni-

variate distribution for which the cumulative distribution function can be calculated 

and also it is the most popular goodness-of-fit test. The chi-square test is applied to 

binned data, like a histogram, but the test requires a sufficient sample size in order for 

the chi-square approximation to be valid [45]. 

Chi-square test: 

 Hypothesis H0: The sample data belongs to a specified distribution 

 Test statistic: 
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 where k is the number of non-empty bins, Ni is the observed frequency for bin  

            i, N is the total number of sample points, pi is the probability corresponding to  

            bin i, and Npi is the estimated frequency for bin i.  

The test statistic in (A.1) follows the chi-square distribution with (k-c) degrees of 

freedom where c is the number of estimated parameters + 1. For Maxwellian and 

Laplacian distributions c = 1+1 = 2.  The hypothesis H0 above is accepted only if the 

test statistic , where α is the significance level. The values of 

 for different values of α and (k-c) are obtained from chi-square tables and 

are distribution-independent. 
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 The chi-square test described above is applicable only for independent data 

sample. The measured and simulated DGD data presented in this report were highly 

correlated and so are not independent. Hence the chi-square test as it is cannot be 

applied to that data and so the test had to be modified slightly to make it suitable for 
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correlated data. The idea here is to estimate the number of independent data points in 

the sample data set and use that number in the test instead of the total number of the 

sample data points. With this modification the test statistic would now be 
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where Nindep is the number of independent samples. 

This modified chi-square test was used in the work to test the goodness-of-fit of the 

measured and simulated DGD and ∆τ' data with that of the Maxwellian and Laplacian 

PDFs respectively. However, the reader is cautioned that the validity of this modified 

chi-square test could not be verified from the literature. 
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APPENDIX B 
Matlab code used to implement the PMD model 
%------------------------------------------------------------------------------------ 
% Matlab code to implement the PMD numerical model 
% This file is specific to the 3-span case; Other cases are similar to this  
% except that the parameter values are different 
% Note: The values of PMD coefficient (b) mentioned here are not the  
% actual values used in the simulations 
%------------------------------------------------------------------------------------ 
 
clear all         % Clears the workspace 
clc                 % Clears the display screen 
tic                  % Start timer 
datestr(now)  % Current time 
 
%--------------------------------------- 
% Constants and some parameters 
%--------------------------------------- 
c=3*1.0e8;                                        % Speed of light in m/s 
lamda=[1535e-9:0.1e-9:1565e-9];   % Wavelength (in m) vector 
N=500*3;                                         % Number of fiber segments 
Len=95*3;                                        % Length of fiber in km 
meanlen=Len/N;                              % Mean of Gau. distribution for h (in km) 
stdlen=0.2*meanlen;                        % Std dev of   "       " 
w=(2*pi*c)./lamda;                          % Optical frequency vector (in Hz) 
 
dlam=0.01e-9;                                   % Wavelength step (in m) 
lam1=lamda+dlam/2; 
lam2=lamda-dlam/2; 
w1=(2*pi*c)./lam1; 
w2=(2*pi*c)./lam2; 
dw=(2*pi*c*dlam)./lamda.^2;         % Frequency step (in Hz) 
 
%------------------------------------------ 
% Raw and filtered temperature data 
%------------------------------------------ 
load tempdata temp1_2_3_interp;   % Load raw data from tempdata file (Units: ºF) 
temp2=[ones(1,2000)*mean(temp1_2_3_interp) temp1_2_3_interp]; 
[btemp atemp]=butter(1,0.08); % Butterworth filter; relative BW parameter of 0.08 
temp2_filt=filter(btemp,atemp,temp2); 
temp=temp2_filt(1,2001:length(temp2_filt)); % Filtered data 
M=length(temp); 
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Temp_term=0.15*temp;    % Temperature term of Phi;  
                                           % Parameter ‘k’ value of 0.15 radians/ºF 
%---------------------------------------------------------------------------------------- 
% PMD coefficient matrix b (ps/sqrt(km). (These are not the actual values) 
%---------------------------------------------------------------------------------------- 
b=[1e-12*ones(M,N/3) 1e-12*ones(M,N/3) 1e-12*ones(M,N/3)]; 
 
%-------------------------------------------------------------------------------------- 
% Random sequences for h (in km), phi (in radians) and alpha (in radians) 
%-------------------------------------------------------------------------------------- 
load halphaphisets_3links;                 % Load from a file 
h=meanlen+meanlen*0.2*hset;         % Segment lengths 
phi=ones(M,1)*phiset*pi*2;              % Static Phi values 
alpha=ones(M+50,1)*alphaset*pi*2; % Coupling angle values 
  
num_sec=4*3;                      % Number of sections with time varying phi 
load phivalues_Links1_2_3; % Random part of Phi values 
 
% Final Phi matrix 
phi(:,1:round((N)/num_sec):N)=phi(:,1:round((N)/num_sec):N)+(Temp_term'*ones(1
,num_sec)+phi_randn_2508by12*pi/90); % Gaussian standard deviation of pi/90 
 
%------------------------------------------ 
% Numerical model implementation 
%------------------------------------------ 
 
for pp=1:M, 
  
    for tt=1:length(lamda), 
 
        %------------------------------------------------- 
        %  Determining the resultant Jones Matrix 
        %------------------------------------------------- 
 
        T1=[1 0;0 1];T2=T1; 
        L=0; 
        for i=1:N, 
            p1=sqrt(-1)*((sqrt((3*pi)/8)*b(pp,i)*w1(1,tt)*sqrt(h(1,i))/2)+phi(pp,i)); 
            p2=sqrt(-1)*((sqrt((3*pi)/8)*b(pp,i)*w2(1,tt)*sqrt(h(1,i))/2)+phi(pp,i)); 
            P1=[exp(p1) 0;0 exp(-p1)]; 
            P2=[exp(p2) 0;0 exp(-p2)]; 
            Q=[cos(alpha(pp,i)) sin(alpha(pp,i));-sin(alpha(pp,i)) cos(alpha(pp,i))]; 
            R1=P1*Q; 
            R2=P2*Q; 

 158



            T1=R1*T1; 
            T2=R2*T2; 
            L=L+h(1,i); 
        end 
        %---------------------- 
        % DGD calculation 
        %---------------------- 
        U=T1*inv(T2); 
        r=eig(U); 
        dgd_comp(pp,tt)=abs(angle(r(1)/r(2))/(dw(1,tt)*1e-12)); 
    end 
end 
dgd=dgd_comp(1:1:M,:); 
 
%----------------------------------- 
% Normalized DGD colormap 
%----------------------------------- 
figure(1); 
clim=[0 2.6];x=[1535 1565];y=[1 34]; 
imagesc(x,y,dgd/mean(mean(dgd)),clim);colorbar;  
xlabel('Wavelength (nm)');ylabel('Time (Days)'); 
 
%-------------------- 
% Maxwellian fit 
%-------------------- 
[s1 s2]=size(dgd); 
d=reshape(dgd,1,s1*s2); 
d_norm=d./mean(d); 
deltatao_norm=[0:0.0001:max(d_norm)]; 
qq=sqrt(pi/8)*mean(d_norm); 
maxwel_norm=(2*deltatao_norm.^2./(sqrt(2*pi)*qq^3).*exp(-
deltatao_norm.^2./(2*qq^2))); % Maxwellian fit 
 
%-------------------------------------------------------------------------------- 
% Normalized DGD histogram and its Maxwellian fit in linear scale 
%--------------------------------------------------------------------------------- 
figure(2); 
[nx_norm,pmd_x_norm]=hist(d_norm,round(sqrt(s1*s2))); % Histogram from 
measured data 
bar(pmd_x_norm,nx_norm,1); 
hold on;plot(deltatao_norm,maxwel_norm,'r','linewidth',2);hold off; 
xlabel('DGD/MeanDGD (ps)');title('Normalized DGD Histogram and Maxwellian fit 
in linear scale'); 
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%----------------------------------------------------------------------------- 
% Normalized DGD histogram and its Maxwellian fit in log scale 
%----------------------------------------------------------------------------- 
figure(3); 
semilogy(pmd_x_norm,nx_norm,'b',deltatao_norm,maxwel_norm,'r'); 
xlabel('DGD/Mean DGD (ps)');title('Normalized DGD Histogram and Maxwellian fit 
in log scale'); 
 
timegap=20/60; % Time interval between measurements 
 
%--------------------------------------------------------- 
% Numerical evaluation of DGD time derivative 
%--------------------------------------------------------- 
dgdder=(dgd(1:s1-1,:)-dgd(2:s1,:))/timegap; 
[s11 s22]=size(dgdder); 
ddgd=(reshape(dgdder,1,s11*s22)); 
 
%--------------- 
% Laplacian fit 
%--------------- 
dgdderval=-max(abs(ddgd)):0.0001:max(abs(ddgd)); 
alpha_fit=sqrt(2)/std(ddgd) 
laplacianfit=(alpha_fit/2)*exp(-alpha_fit.*abs(dgdderval)); 
 
%--------------------------------------------------------------------------------- 
% DGD time derivative histogram and its Laplacian fit in linear scale 
%--------------------------------------------------------------------------------- 
figure(4); 
[nx1,pmd_x1]=hist(ddgd,round(sqrt(s11*s22))); % Histogram of DGD time 
derivative 
bar(pmd_x1,nx1./(length(ddgd)*(pmd_x1(1,2)-pmd_x1(1,1))),1);grid; 
hold on; plot(dgdderval,laplacianfit,'r'); 
xlabel('ps/hr');title('DGD Derivative Histogram and Laplacian fit in linear scale'); 
 
%------------------------------------------------------------------------------ 
% DGD time derivative histogram and its Laplacian fit in log scale 
%------------------------------------------------------------------------------ 
figure(5); 
semilogy(pmd_x1,nx1./(length(ddgd)*(pmd_x1(1,2)-
pmd_x1(1,1))),'b',dgdderval,laplacianfit,'r');grid; 
xlabel('ps/hr');title('DGD Derivative Histogram and Laplacian fit in log scale'); 
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%------------------------------------------- 
% Raw and filtered temperature plots 
%------------------------------------------- 
figure(6); 
subplot(2,1,1);plot([(1/(3*24)):1/(3*24):34],temp2(1,2031:4478),'k','linewidth',2);  
xlabel('Time (Days)');ylabel('Temperature (degF)'); title('Raw, interpolated air 
temperature');grid; 
subplot(2,1,2);plot([(1/(3*24)):1/(3*24):34],temp(1,31:2478),'k','linewidth',2);  
xlabel('Time (Days)');ylabel('Temperature (degF)'); title('Filtered, interpolated air 
temperature');grid; 
 
toc                % End timer 
datestr(now) % Simulation end time 
 
save Links1_2_3_95km_k015_filt008_gvarpiby90 % Save the workspace 
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